

Wave Functions of the Hydrogen Molecular Ion

D. R. Bates, Kathleen Ledsham and A. L. Stewart

Phil. Trans. R. Soc. Lond. A 1953 246, 215-240

doi: 10.1098/rsta.1953.0014

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

[215]

WAVE FUNCTIONS OF THE HYDROGEN MOLECULAR ION

By D. R. BATES, KATHLEEN LEDSHAM AND A. L. STEWART

Queen's University, Belfast, and University College, London

(Communicated by H. S. W. Massey, F.R.S.—Received 13 March 1953—Revised 13 May 1953)

CC	NT	LE.	NTT	rς
1 11 1		I F.	V	

	PAGE		PAGE
Introduction	215	Table 2. The coefficients of the μ	
CONTOUR DIAGRAMS OF NORMALIZED WAVE		EXPANSION	231
functions of H_2^+ (Figures 1 to 8)	219	$1s\sigma_g$, $2s\sigma_g$	231
$1s\sigma_g$, $R=2$, 4	219	$3s\sigma_g$, $2p\sigma_u$	232
$2s\sigma_g, R=2, 4; 3s\sigma_g, R=2$	220	$3\rho\sigma_{n},4\rho\sigma_{n}$	233
$3s\sigma_g, R=4; 2p\sigma_u, R=2, 4$	221	$3d\sigma_{\sigma}, 4f\sigma_{u}$	234
$3p\sigma_u, R=2, 4; 4p\sigma_u, R=2$	222		
$4p\sigma_u, R=4; 2p\pi_u, R=2, 4$	223	$2p\pi_u,3d\pi_g$	235
$3d\pi_{g}, R=2, 4$	224		
References	224	Table 3. The coefficients of the λ expansion	236
TABLE 1. THE BASIC PARAMETERS	226	$1s\sigma_{_{\it E}}, 2s\sigma_{_{\it E}}$	236
$1s\sigma_g$, $2s\sigma_g$	226	$3s\sigma_{\sigma}, 2\rho\sigma_{u}$	237
$3s\sigma_{\nu}$, $2p\sigma_{\mu}$	227		
$3\rho\sigma_{u}, 4\rho\sigma_{u}$	228	$3p\sigma_u$, $4p\sigma_u$	238
$3d\sigma_{\varrho},4f\sigma_{u}$	229	$3d\sigma_{g},4f\sigma_{u}$	239
$2p\pi_u^{''},3d\pi_g^{''}$	230	$2p\pi_u,\ 3d\pi_g$	24 0

The $1s\sigma_g$, $2s\sigma_g$, $3s\sigma_g$, $2p\sigma_u$, $3p\sigma_u$, $4p\sigma_u$, $3d\sigma_g$, $4f\sigma_u$, $2p\pi_u$ and $3d\pi_g$ states of the hydrogen molecular ion are investigated. The main results are given in the form of tables of parameters from which the electronic wave functions (in spheroidal co-ordinates) can be obtained. A representative selection of contour diagrams is also presented.

1. The structure of the hydrogen molecular ion has been studied by a number of theorists; thus, Burrau (1927), Hylleraas (1931), Jaffé (1934), Sandeman (1935) and Johnson (1941) have solved the exact wave equation for the ground state; and Guillemin & Zener (1929), Morse & Stueckelberg (1929), Teller (1930), Dickinson (1933), Gilbert (1933), Coulson (1937), Pritchard & Skinner (1951) and others have performed approximate calculations on both this state and some of the excited states. However, in spite of this, adequate tables of the electronic wave functions do not appear to have been published. A demand for tables of these wave functions arose recently in connexion with investigations which are being undertaken in Belfast and London on a variety of problems, including the determination of such quantities as the oscillator strengths of the allowed and forbidden transitions of H₂⁺, and the cross-sections associated with the excitation of hydrogen atoms by slow protons. It was necessary, therefore, to carry out the relevant computations. The present paper gives the results obtained for the following states:

Vol. 246. A. 911. (Price 6s.)

28

[Published 5 November 1953

united atom designation	separated atoms† designation	form of potential energy curve
$egin{array}{l} 1s\sigma_g \ 2s\sigma_g \ 3s\sigma_g \ 2p\sigma_u \ 3p\sigma_u \ 4p\sigma_u \ 3d\sigma_g \ 4f\sigma_u \ 2p\pi_u \ 3d\sigma_g \ \end{array}$	$\begin{array}{c} \sigma \ (1s) \\ \sigma \ (2s, 2p_z) \\ \sigma \ (3s, 3p_z, 3d_z) \\ \sigma^* \ (1s) \\ \sigma^* \ (2s, 2p_z) \\ \sigma^* \ (3s, 3p_z, 3d_z) \\ \sigma \ (2s, 2p_z) \\ \sigma \ (2s, 2p_z) \\ \sigma^* \ (2s, 2p_z) \\ \pi \ (2p_x) \\ \pi^* \ (2p_x) \end{array}$	deep minimum repulsive repulsive repulsive repulsive repulsive shallow minimum repulsive shallow minimum repulsive

In the case of H₂⁺ the united atom designation is especially appropriate (cf. Herzberg 1950), and consequently the separated atoms designation (which though convenient in chemical discussions is sometimes ambiguous) is not used hereafter. As a wide range of inter-nuclear separations is covered the actual wave functions would occupy very many pages. Instead of displaying them in full, sets of parameters are tabulated from which they may readily be derived.

2. Ignoring the finiteness of the mass of the protons the Schrödinger equation for the electronic wave functions of H₂⁺ is

$$\frac{\partial}{\partial\lambda}\Big\{(\lambda^2-1)\frac{\partial\Psi}{\partial\lambda}\Big\} + \frac{\partial}{\partial\mu}\Big\{(1-\mu^2)\frac{\partial\Psi}{\partial\mu}\Big\} + \Big\{\frac{1}{\lambda^2-1} + \frac{1}{1-\mu^2}\Big\}\frac{\partial^2\Psi}{\partial\phi^2} + \big\{\frac{1}{4}R^2E(\lambda^2-\mu^2) + 2R\lambda\big\}\Psi = 0, \quad (1)$$

where λ and μ are the usual confocal elliptic co-ordinates, ϕ is the azimuthal angle, R is the distance between the two nuclei in atomic units, and E is the electronic energy in Rydbergs.

Writing
$$\Psi(\lambda, \mu, \phi) = \Lambda(\lambda) M(\mu) \Phi(\phi)$$
 (2)

and
$$p^2 = -\frac{1}{4}R^2E$$
,

we obtain at once (cf. Baber & Hassé 1935) that

$$\Phi(\phi) = \frac{\cos}{\sin}(m\phi) \quad (m = 0, 1, 2, ...),$$
 (4)

(3)

and that $M(\mu)$ and $\Lambda(\lambda)$ satisfy

$$\frac{\mathrm{d}}{\mathrm{d}\mu} \left\{ (1 - \mu^2) \frac{\mathrm{dM}}{\mathrm{d}\mu} \right\} + \left\{ -A + p^2 \mu^2 - \frac{m^2}{1 - \mu^2} \right\} \mathbf{M} = 0$$
 (5)

and

$$rac{\mathrm{d}}{\mathrm{d}\lambda}\Big\{(\lambda^2-1)rac{\mathrm{d}\Lambda}{\mathrm{d}\lambda}\Big\} + \Big\{A + 2R\lambda - p^2\lambda^2 - rac{m^2}{\lambda^2-1}\Big\}\Lambda = 0,$$
 (6)

A being a separation constant.

Equation (5) has been studied in great detail by Stratton, Morse, Chu & Hutner (1941). If m and p are specified, proper solutions exist only for particular values of the separation constant. These eigenvalues are the roots of an equation involving an infinite continued fraction. The eigenfunction, $M(l, m, p \mid \mu)$, corresponding to the (1-m+l)th root, A(l, m, p), may be expanded in terms of the associated Legendre polynomials,

$$M(l, m, p \mid \mu) = \sum_{s}' f_{s}(l, m, p) P_{m+s}^{m}(\mu),$$
 (7)

† The symbols within the brackets represent the atomic orbitals, which, of course, belong to both nuclei. Odd (u) states are indicated with an asterisk, and even (g) states are left plain (cf. Coulson 1952). The former are all unstable but the latter are not all stable.

the summation being over even values of s if (l+m) is even, and over odd values of s if (l+m) is odd. Stratton *et al.* have published tables giving the separation constants and the expansion coefficients as functions of p for the lower values of l and m (which are the values of most interest).

Analytical solutions of (6) have been derived by Jaffé (1934), who writes

$$\Lambda(\lambda) = (\lambda^2 - 1)^{\frac{1}{2}m} (\lambda + 1)^{\sigma} \exp(-p\lambda) y(\zeta), \tag{8}$$

with

$$\sigma = \frac{R}{\rho} - m - 1,\tag{9}$$

and

$$\zeta = (\lambda - 1)/(\lambda + 1), \tag{10}$$

so that $\zeta(1-\zeta)^2 \frac{d^2y}{d\zeta^2} + [-(m+2\sigma-1)\zeta^2 + 2(\sigma-2p-1)\zeta + m+1] \frac{dy}{d\zeta}$

$$+ [\sigma(\sigma+m)\zeta + \sigma(1+2p) + m(m+1+\sigma) + A']y = 0,$$
 (11)

where

$$A' = A - p^2. \tag{12}$$

Taking

$$y = \sum_{t=0}^{\infty} g_t \zeta^t \tag{13}$$

and substituting in (11), he obtains the three-term recurrence relation

$$\alpha_t g_{t+1} - \beta_t g_t + \gamma_t g_{t-1} = 0, \tag{14}$$

with

$$egin{aligned} lpha_t &= (t+1) \ (t+m+1), \ eta_t &= 2t^2 + (4p-2\sigma) \ t - A' - 2p\sigma - (m+1) \ (m+\sigma), \ \gamma_t &= (t-1-\sigma) \ (t-1-\sigma-m). \end{aligned}$$

It follows that

$$g_t/g_{t-1} = F_t, \tag{16}$$

where F_t is the continued fraction

$$\frac{\gamma_t}{\beta_t} - \frac{\alpha_t \gamma_{t+1}}{\beta_{t+1}} - \frac{\alpha_{t+1} \gamma_{t+2}}{\beta_{t+2}} - \dots$$

$$\tag{17}$$

Noting that g_{-1} is zero we have therefore that

$$\beta_0/\alpha_0 = F_1. \tag{18}$$

The eigenvalues of σ , for given p, m and A', are the roots of this equation. When p is zero they can be found by inspection, but in general it is necessary to proceed by successive approximations. The designation $\sigma(n, l, m; p)$ will be used to denote the (n-l)th root, the constant A' being taken as

$$A'(l, m; p) = A(l, m; p) - p^{2}.$$
(19)

Computations were carried out giving $\sigma(n, l, m; p)$ as a function of p for the following cases:

$$m=0 egin{array}{l} l=0; & n=1,2,3 & ext{(i.e. } 1s\sigma_g, \, 2s\sigma_g, \, 3s\sigma_g), \ l=1; & n=2,3,4 & ext{(i.e. } 2p\sigma_u, \, 3p\sigma_u, \, 4p\sigma_u), \ l=2; & n=3 & ext{(i.e. } 3d\sigma_g), \ l=3; & n=4 & ext{(i.e. } 4f\sigma_u), \ m=1 & egin{array}{l} l=1; & n=2 & ext{(i.e. } 2p\pi_u), \ l=2; & n=3 & ext{(i.e. } 3d\pi_g). \end{array}$$

The corresponding values of the distance between the two protons, R(n, l, m; p), were got from (9) and, with the aid of inverse interpolation, the basic parameters were then determined as functions of this distance. For the ten states studied we thus have p(n, l, m; R)(and hence, from (3), E(n, l, m; R)), A'(n, l, m; R) and $\sigma(n, l, m; R)$. Table 1 gives the values obtained.† An R-range of from 0 to 10 is covered where the data of Stratton et al. are sufficiently extensive to make this possible. Finally, the coefficients of the μ -expansion (which Stratton et al. present as f(m, l; p) were converted to the form f(n, l, m; R) by direct interpolation; and the coefficients of the λ -expansion, g(n, l, m; R), were found by numerical substitution in Jaffé's recurrence relation. These coefficients are displayed in tables 2 and 3 respectively. Normalization factors are not included but they may easily be computed. It may be noted that the results can be modified to apply to the more general system in which the charges on the nuclei are Z instead of unity; all that is necessary is to multiply the R columns by Z^{-1} and the E columns by Z^2 . The case Z=0.5 is artificial but nevertheless of some interest representing as it does the simplest conceivable neutral molecule.

Table 4. Comparison of exact and L.C.A.O. wave functions of $1s\sigma_g$ AND $2p\sigma_n$ states of the hydrogen molecular ion

distance from centre along inter-nuclear axis	wave function	wave function
(in atomic units)	exact L.C.A.O.	exact L.C.A.O.
0 1 2 3 4	$R = 2 egin{array}{ll} 0.315 & 0.233 \ 0.458 & 0.360 \ 0.120 & 0.132 \ 0.030 & 0.049 \ 0.007 & 0.018 \ \end{array}$	$ \begin{matrix} 1s\sigma_g \\ R = 4 \end{matrix} \begin{cases} 0.127 & 0.099 \\ 0.175 & 0.153 \\ 0.378 & 0.373 \\ 0.123 & 0.137 \\ 0.039 & 0.050 \end{matrix} $
$egin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ \end{array}$	$R=2p\sigma_u top R=2 egin{cases} 0.000 & 0.000 & 0.000 \ 0.453 & 0.536 \ 0.199 & 0.197 \ 0.078 & 0.073 \ 0.029 & 0.027 $	$ \begin{array}{cccc} 2p\sigma_u \\ R=4 \end{array} \begin{pmatrix} 0.000 & 0.000 \\ 0.146 & 0.141 \\ 0.436 & 0.435 \\ 0.158 & 0.160 \\ 0.055 & 0.059 \\ \end{array} $

In treating complex molecules frequent use is made of the L.C.A.O. approximation, so it is instructive to examine how accurate this is in the case of H₂⁺. Table 4 shows a comparison with the two centre wave functions of the $1s\sigma_g$ and $2p\sigma_u$ states which, on the L.C.A.O. approximation, are represented by

$$[e^{-r_1} + e^{-r_2}]/[2\pi(1+S)]^{\frac{1}{2}}$$
 (20)

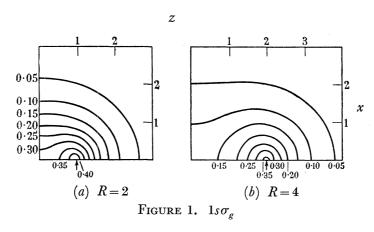
and

$$[e^{-r_1} - e^{-r_2}]/[2\pi(1-S)]^{\frac{1}{2}}$$
(21)

respectively, r_1 and r_2 being the distances of the electron from the two nuclei and S being the function $(1+R+\frac{1}{3}R^2)e^{-R}$. (22)

[†] A similar table giving the binding energy of an electron in the combined field of a proton and a negative meson was prepared some years ago but was not published owing to the appearance of a paper by Wightman (1950) which included an account of independent calculations on this binding energy. However, it is perhaps worth taking this opportunity of recording the check on Wightman's numerical results. (Tables 1, 2 and 3 are printed at the end of the paper.)

As can be seen the agreement is but moderate. It may be noted also in this connexion that the use of (20) and (21) in the calculation of the oscillator strength of the $1s\sigma_g$ to $2p\sigma_u$ transition does not yield very precise results (Bates 1951).


Table 5. Comparison of the exact and L.C.A.O. Potential energies of the $2s\sigma_g, 3p\sigma_u, 3d\sigma_g$ and $4f\sigma_u$ states of the hydrogen molecular ion

inter- nuclear		potential energy $2/R + E$ (Rydbergs)						
separation R	2.	σ_g	3/	σ_u	36	$d\sigma_g$	4,	$f\sigma_u$
(atomic units)	overet	L.C.A.O.	ove et	L.C.A.O.		L.C.A.O.	overet	L.C.A.O.
1	exact +1·154	approx. $+1.334$	exact $+1.521$	approx. $+1.560$	exact +1.550	approx. $+0.594$	exact $+1.749$	approx. $+0.894$
$\frac{2}{3}$	$+0.278 \\ +0.029$	$+0.380 \\ +0.090$	$+0.489 \\ +0.160$	$+0.500 \\ +0.172$	$+0.528 \\ +0.152$	$-0.170 \\ -0.324$	$+0.747 \\ +0.409$	$-0.297 \\ -0.668$
4	-0.077	-0.037	+0.010	+0.020	-0.071	-0.364	+0.235	-0.806
$rac{6}{8}$	-0.162 -0.194	$-0.141 \\ -0.182$	$-0.122 \\ -0.175$	$-0.115 \\ -0.170$	$-0.292 \\ -0.347$	$-0.372 \\ -0.360$	$+0.041 \\ -0.085$	$-0.745 \\ -0.344$
$^{10}_{\infty}$	-0.209 -0.250	$-0.203 \\ -0.250$	-0.201 -0.250	$-0.198 \\ -0.250$	$-0.346 \\ -0.250$	$-0.343 \\ -0.250$	$-0.170 \\ -0.250$	$-0.207 \\ -0.250$

For the other states it was found, on making a similar comparison to that in table 4, that the L.C.A.O. approximation† is in the main poor, as of course would be expected since the atomic orbitals involved are excited. Instead of displaying this comparison, table 5 is presented as being perhaps of more interest to chemists. It gives the exact and approximate values of the potential energies of several of the states. Clearly, the difference between them is sometimes considerable even at quite large inter-nuclear separations. The matter will not be pursued further in the present paper as a more detailed assessment of the L.C.A.O. and other approximations will be published elsewhere.

A number of contour diagrams (figures 1 to 8) are given to illustrate the general form of the H_2^+ wave functions. In these the normalization is as usual; the origin of the co-ordinate system is at the centre of the ion; the position of one proton is marked by a small arrow; the z-axis is along the inter-nuclear line; and the x-axis is perpendicular to this line and (in the case of π states) to the nodal plane.

Figures 1 to 8. Contour diagrams of normalized wave functions of H₂⁺.

[†] The σ states were treated (cf. Gilbert 1933) as hybrids of the 2s and $2p_z$ atomic states or of the 3s, $3p_z$ and $3d_z$ atomic states; the π states were based on only the $2p_x$ atomic state.

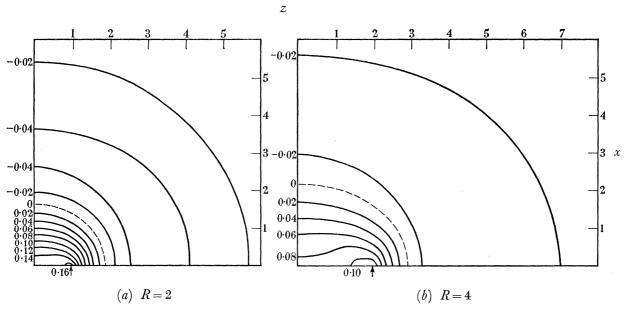
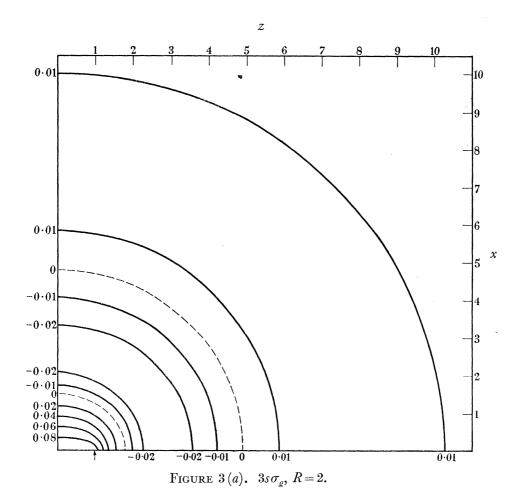
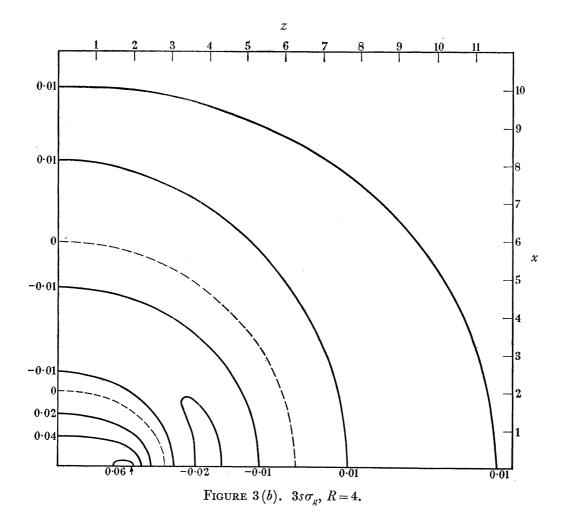




Figure 2. $2s\sigma_g$.

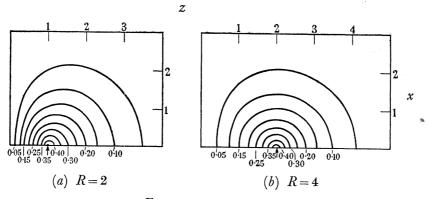


Figure 4. $2p\sigma_u$.

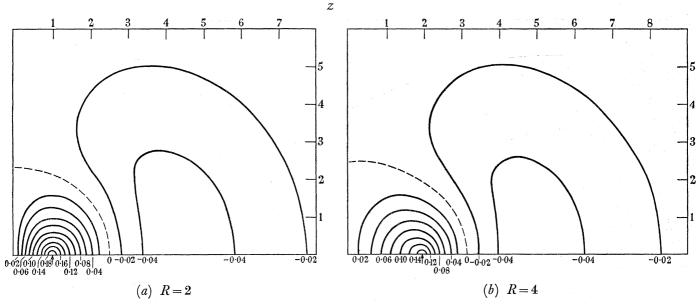


Figure 5. $3p\sigma_u$.

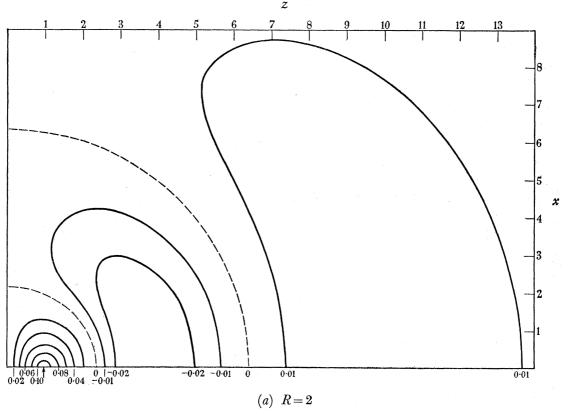


Figure 6. $4p\sigma_u$.

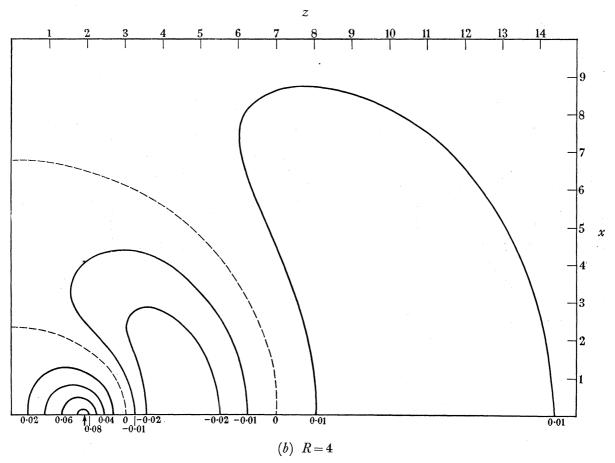


Figure 6. $4p\sigma_u$.

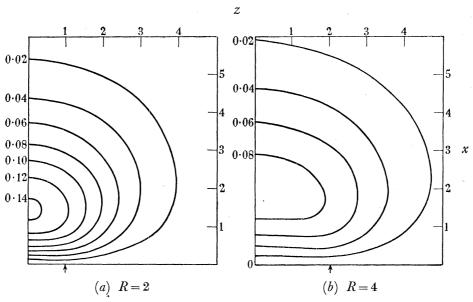
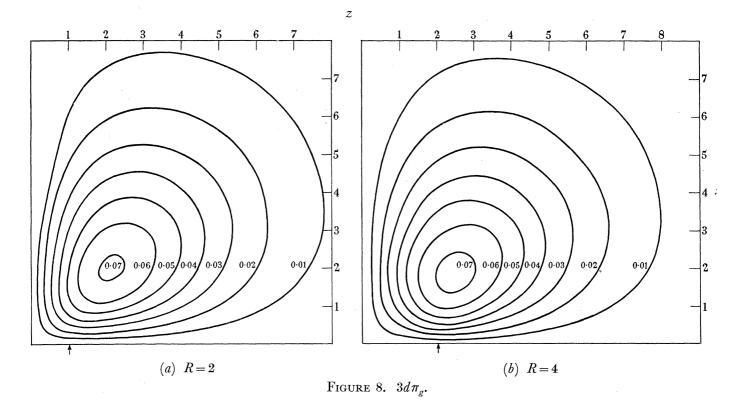



FIGURE 7. $2p\pi_{u}$.

In conclusion, we wish to thank Professor H. S. W. Massey, F.R.S., for the encouragement he gave us during the course of the calculations.

REFERENCES

Baber, W. G. & Hassé, H. R. 1935 Proc. Camb. Phil. Soc. 31, 564.

Bates, D. R. 1951 J. Chem. Phys. 19, 1122.

Burrau, O. 1927 K. danske Vidensk. Selsk. 7, 1.

Coulson, C. A. 1937 Trans. Faraday Soc. 33, 1479.

Coulson, C. A. 1952 Valence, p. 90. Oxford: Clarendon Press.

Dickinson, B. N. 1933 J. Chem. Phys. 1, 317.

Gilbert, C. 1933 Phil. Mag. 14, 929.

Guillemin, V. & Zener, C. 1929 Proc. Nat. Acad. Sci., Wash., 15, 314.

Herzberg, G. 1950 Molecular spectra and molecular structure, 2nd ed. 1, Spectra of diatomic molecules, p. 330. New York: Van Nostrand; London: Macmillan.

Hylleraas, E. A. 1931 Z. Phys. 71, 739.

Jaffé, G. 1934 Z. Phys. 87, 535.

Johnson, V. A. 1941 Phys. Rev. 60, 373.

Morse, P. M. & Stueckelberg, E. C. G. 1929 Phys. Rev. 33, 932.

Pritchard, H. O. & Skinner, H. A. 1951 J. Chem. Soc. 2, 945.

Sandeman, I. 1935 Proc. Roy. Soc. Edinb. 55, 72.

Stratton, J. A., Morse, P. M., Chu, L. J. & Hutner, R. A. 1941 Elliptic, cylinder and spheroidal wave functions. New York: John Wiley and Sons; London: Chapman and Hall.

Teller, E. 1930 Z. Phys. 61, 458.

Wightman, A. S. 1950 Phys. Rev. 77, 516.

NOTE ON THE TABLES

Though the figures in the three groups of tables are generally correct to the last decimal place retained some are certainly in error by one unit, and there is the possibility that a few are in error by several units; little significance can be attached to the last decimal place of the bracketed figures.

Casual inspection of tables 3 might suggest that some of the g_t series should have been carried further. This is not the case; these series finally converge extremely rapidly and the higher members (for which values are not presented) may be neglected.

Derived wave functions should be accurate to at least 1 part in 5000 over the main part of their range. Moreover, as the smaller f_s coefficients are given to extra decimal places, computational difficulties should not occur in applications in which the usual dominance of the contribution from the larger coefficients is reduced by effects arising from the orthogonal properties of the associated Legendre polynomials.

Throughout, the internuclear separation, R, is in units of a_0 , the radius of the first Bohr orbit, and the energy is in Rydbergs.

TABLE 1. THE BASIC PARAMETERS

22	6	D. R. B.	ATES, KA	THLEEN	LEDSHAM	AND A. I	. STEWAI	RT	
	-E	$\begin{array}{c} 1.00000\\ (0.98193)\\ (0.94819)\\ (0.91224)\\ 0.87777 \end{array}$	0.84585 0.81657 0.78975 0.76517 0.74257	$\begin{array}{c} 0.72173 \\ 0.70244 \\ 0.68454 \\ 0.66788 \\ 0.65232 \end{array}$	$\begin{array}{c} 0.63777 \\ 0.62412 \\ 0.61129 \\ 0.59921 \\ 0.58780 \end{array}$	$\begin{array}{c} 0.57703 \\ 0.56684 \\ 0.55717 \\ 0.54801 \\ 0.53929 \end{array}$	$\begin{array}{c} 0.53101 \\ 0.51200 \\ 0.49511 \\ 0.48004 \\ 0.46656 \end{array}$	0.45445 0.44355 0.43372 0.42483 0.41676	0.40942
	-A'	$\begin{array}{c} 0.00000\\ 0.00654\\ 0.02526\\ 0.05464\\ 0.09333 \end{array}$	$\begin{array}{c} 0.14030 \\ 0.19468 \\ 0.25574 \\ 0.32287 \\ 0.39553 \end{array}$	0.47326 0.55565 0.64233 0.73295 0.82721	$\begin{array}{c} 0.92483 \\ 1.02554 \\ 1.12910 \\ 1.23527 \\ 1.34383 \end{array}$	$\begin{array}{c} 1.45459 \\ 1.56735 \\ 1.68192 \\ 1.79813 \\ 1.91581 \end{array}$	$\begin{array}{c} 2.03482 \\ 2.33710 \\ 2.64448 \\ 2.95501 \\ 3.26701 \end{array}$	3.57904 3.88990 4.19864 4.50456 4.80717	5.10618
28 cg	ь	$ \begin{array}{c} 1.00000 \\ (1.01832) \\ (1.05392) \\ (1.09399) \\ 1.13471 \end{array} $	$\begin{array}{c} 1.17462 \\ 1.21327 \\ 1.25053 \\ 1.28639 \\ 1.32092 \end{array}$	1.35420 1.38630 1.41730 1.44727 1.47627	$\begin{array}{c} 1.50436 \\ 1.53160 \\ 1.55803 \\ 1.58370 \\ 1.60863 \end{array}$	$\begin{array}{c} 1.63287 \\ 1.65645 \\ 1.67939 \\ 1.70171 \\ 1.72344 \end{array}$	1.74460 1.79509 1.84236 1.88662 1.92804	1.96679 2.00301 2.03686 2.06849 2.09805	2.12568
•	þ	$\begin{array}{c} 0.00000 \\ 0.09909 \\ 0.19475 \\ 0.28653 \\ 0.37476 \end{array}$	0.45985 0.54218 0.62208 0.69979 0.77555	$\begin{array}{c} 0.84954 \\ 0.92193 \\ 0.99284 \\ 1.06241 \\ 1.13073 \end{array}$	1.19791 1.26402 1.32915 1.39335 1.45670	1.51925 1.58106 1.64217 1.70263 1.76248	1.82176 1.96774 2.11092 2.25177 2.39068	2.52799 2.66399 2.79894 2.93304 3.06645	3.19930
	R	0.0 0.2 0.4 0.6 0.8	1.0 1.2 1.4 1.6 1.8	22.5 2.4.2.0 8.6.4.2.0	3.2 3.4 3.6 3.8	4.4 4.4 4.6 8.4	5.0 6.5 7.0	9 9 8 8 7 9 9 5 5 6 5 5 6 5 7	10.0
		`							
	-E	$\begin{array}{c} 4.00000 \\ (3.85741) \\ (3.60157) \\ (3.34301) \\ (3.10895) \end{array}$	(2.90356) (2.72461) (2.56853) (2.43186) (2.31162)	2.20525 2.11076 2.02642 1.95090 1.88299	1.82178 1.76647 1.71639 1.67097 1.62971	1.59216 1.55799 1.52685 1.49844 1.47252	$\begin{array}{c} 1.44884 \\ 1.39810 \\ 1.35726 \\ 1.32412 \\ 1.29690 \end{array}$	$\begin{array}{c} 1.27426 \\ 1.25514 \\ 1.23878 \\ 1.22461 \end{array}$	
	-4'	0.00000 0.02569 0.09573 0.19923 0.32790	$\begin{array}{c} 0.47595 \\ 0.63923 \\ 0.81469 \\ 1.00004 \\ 1.19346 \end{array}$	1.39352 1.59905 1.80905 2.02267 2.23921	$\begin{array}{c} 2.45803 \\ 2.67857 \\ 2.90035 \\ 3.12294 \\ 3.34597 \end{array}$	3.56909 3.79201 4.01451 4.23637 4.45743	4.67756 5.22323 5.76182 6.29359 6.81922	7-33975 7-85608 8-36915 8-87974	
1 S G g	Ь	$\begin{array}{c} 0.00000\\ 0.01831\\ 0.05386\\ 0.09386\\ 0.13429 \end{array}$	$\begin{array}{c} 0.17372 \\ 0.21165 \\ 0.24792 \\ 0.28251 \\ 0.31545 \end{array}$	0.34679 0.37661 0.40496 0.43190 0.45749	$\begin{array}{c} 0.48177 \\ 0.50479 \\ 0.52659 \\ 0.54720 \\ 0.56666 \end{array}$	$\begin{array}{c} 0.58502 \\ 0.60231 \\ 0.61857 \\ 0.63384 \\ 0.64816 \end{array}$	$\begin{array}{c} 0.66157 \\ 0.69145 \\ 0.71671 \\ 0.73807 \\ 0.75621 \end{array}$	0.77175 0.78519 0.79693 0.80730	
	þ	0.00000 0.19640 0.37956 0.54852 0.70529	0.85199 0.99038 1.12186 1.24755 1.36836	1.48501 1.59813 1.70823 1.81577 1.92111	$\begin{array}{c} 2.02460 \\ 2.12654 \\ 2.22719 \\ 2.32679 \\ 2.42554 \end{array}$	$\begin{array}{c} 2.52362 \\ 2.62121 \\ 2.71845 \\ 2.81545 \\ 2.91234 \end{array}$	3.00919 3.25164 3.49505 3.73979 3.98585	$4.23311 \\ 4.48133 \\ 4.73028 \\ 4.97979$	
	R	0.0 0.2 0.4 0.6 0.8	0:11 0:12 0:44 0:18	0 0 4 9 8 0 0 4 9 8	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.4.4.4.4.6.6.8.6.8.8.8.8.8.8.8.8.8.8.8.8	5.5 6.0 6.5 7.0	7.5 8.0 9.0	

		38 38 31 11 18	32 22 23 46 11 14	22 22 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	% # 8 % % 4 7 # 8 % % 4 # 1	10 25 25 25 25 25	58 39 31 36	35531	- •
	-E	$\begin{array}{c} 1.00000 \\ (1.00535) \\ (1.02158) \\ 1.04861 \\ 1.08548 \end{array}$	1.12962 1.17722 1.22415 1.26721 1.30446	1.33507 1.35912 1.37715 1.38991 1.39822	1.40285 1.40443 1.40358 1.40082 1.39654	1.39110 1.38478 1.37779 1.37032 1.36255	1.35458 1.33439 1.31462 1.29581 1.27826	1.26206 1.24721 1.23365 1.22131	
	-A'	$\begin{array}{c} 2.00000 \\ 2.00402 \\ 2.01633 \\ 2.03769 \\ 2.06927 \end{array}$	2·11241 2·16829 2·23748 2·31993 2·41507	2.52196 2.63955 2.76678 2.90261 3.04610	3.19639 3.35271 3.51439 3.68083 3.85150	4.02594 4.20371 4.38444 4.56781 4.75351	4.94128 5.41823 5.90366 6.39517 6.89099	7.38984 7.89072 8.39286 8.89588	
$2p_{\sigma_u}$	Ь	$\begin{array}{c} 1.00000\\ (0.99467)\\ (0.97877)\\ 0.95309\\ 0.91963 \end{array}$	0.88175 0.84332 0.80764 0.77666 0.75111	$\begin{array}{c} 0.73092 \\ 0.71554 \\ 0.70427 \\ 0.69643 \\ 0.69138 \end{array}$	$\begin{array}{c} 0.68859 \\ 0.68764 \\ 0.68815 \\ 0.68981 \\ 0.69240 \end{array}$	$\begin{array}{c} 0.69571 \\ 0.69958 \\ 0.70388 \\ 0.70851 \\ 0.71338 \end{array}$	$\begin{array}{c} 0.71841 \\ 0.73136 \\ 0.74434 \\ 0.75695 \\ 0.76897 \end{array}$	$\begin{array}{c} 0.78029 \\ 0.79086 \\ 0.80067 \\ 0.80974 \end{array}$	
	þ	$\begin{array}{c} 0.00000 \\ 0.10027 \\ 0.20215 \\ 0.30720 \\ 0.41675 \end{array}$	$\begin{array}{c} 0.53142 \\ 0.65100 \\ 0.77449 \\ 0.90056 \\ 1.02792 \end{array}$	$\begin{array}{c} 1.15545 \\ 1.28239 \\ 1.40823 \\ 1.53263 \\ 1.65545 \end{array}$	1.77663 1.89614 2.01404 2.13041 2.24533	2.35890 2.47121 2.58234 2.69240 2.80148	2.90966 3.17669 3.43971 3.69960 3.95710	4.21280 4.46715 4.72047 4.97308	
	R	0.0 0.2 0.4 0.6 0.6	1.0 1.2 1.4 1.6 1.8	0.4.4.9.8.2	3.0 3.4 3.4 3.6 3.6	4·0 4·4 4·4 4·6 4·6	7.00.00 7.00.00 7.00.00	7.888.99.99.99.99	
	-E	$\begin{array}{c} 0.44444 \\ (0.43905) \\ (0.42891) \\ (0.41783) \\ \end{array}$	0.39687 0.38737 0.37851 0.37026 0.36257	0.35536 0.34280 0.34224 0.33624 0.33056	0.32519 0.32009 0.31523 0.31061 0.30620	0.30198 0.29794 0.29407 0.29036 0.28680	$\begin{array}{c} 0.28337 \\ 0.27535 \\ 0.26803 \\ 0.26131 \\ 0.25512 \end{array}$	$\begin{array}{c} 0.24941 \\ 0.24412 \\ 0.23921 \\ 0.23464 \\ 0.23038 \end{array}$	0.22640
	- <i>A'</i>	$\begin{array}{c} 0.00000 \\ 0.00293 \\ 0.01143 \\ 0.02505 \\ 0.04336 \end{array}$	0.06600 0.09267 0.12313 0.15714 0.19449	$\begin{array}{c} 0.23502 \\ 0.27854 \\ 0.32490 \\ 0.37397 \\ 0.42560 \end{array}$	0.47968 0.53609 0.59471 0.65545 0.71821	0.78287 0.84936 0.91758 0.98745 1.05889	$\begin{array}{c} 1.13181 \\ 1.32010 \\ 1.51602 \\ 1.71849 \\ 1.92649 \end{array}$	$\begin{array}{c} 2.13905 \\ 2.35529 \\ 2.57434 \\ 2.79541 \\ 3.01780 \end{array}$	3.24083
38 a	ь	$\begin{array}{c} 2.0000 \\ 2.0183 \\ 2.0539 \\ 2.0940 \\ \hline 2.1347 \end{array}$	2·17472 2·21343 2·25079 2·28680 2·32151	2.35501 2.38739 2.41873 2.44911 2.47858	$\begin{array}{c} 2.50721 \\ 2.53505 \\ 2.56216 \\ 2.58858 \\ 2.61434 \end{array}$	$\begin{array}{c} 2.63950 \\ 2.66407 \\ 2.68809 \\ 2.71158 \\ 2.73458 \end{array}$	$\begin{array}{c} 2.75709 \\ 2.81141 \\ 2.86314 \\ 2.91248 \\ 2.95963 \end{array}$	3.00472 3.04789 3.08924 3.12887 3.16686	3.20328
	d	$\begin{array}{c} 0.00000\\ 0.06626\\ 0.13098\\ 0.19392\\ 0.25521 \end{array}$	0.314988 0.373433 0.430664 0.486795 0.541922	$\begin{array}{c} 0.596123 \\ 0.649467 \\ 0.702014 \\ 0.753818 \\ 0.804926 \end{array}$	$\begin{array}{c} 0.855382 \\ 0.905220 \\ 0.954478 \\ 1.003183 \\ 1.051366 \end{array}$	$\begin{array}{c} 1.099053\\ 1.146266\\ 1.193030\\ 1.239363\\ 1.285286 \end{array}$	1.330818 1.443035 1.553141 1.661349 1.767842	$\begin{array}{c} 1.872790 \\ 1.976338 \\ 2.078625 \\ 2.179774 \\ 2.279896 \end{array}$	2.379092
	R	0.0 0.7 0.0 0.8	02408	00400 00408	6.6.6.6.6.6.6.8.6.8.8.8.8.8.8.8.8.8.8.8	4.4 4.4 4.6 8.4 8.4	7 6 5 5 0 7 5 5 5 5 0	7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10.0

Table 1. The basic parameters (cont.)

228

	-E	$\begin{array}{c} 0.25000 \\ (0.25067) \\ (0.25264) \\ (0.25577) \\ (0.25969) \end{array}$	0.26383 0.26762 0.27065 0.27280 0.27408	0.27463 0.27458 0.27406 0.27319 0.27206	0.27073 0.26926 0.26768 0.26603 0.26433	0.26259 0.26085 0.25909 0.25734 0.25559	0.25386 0.24961 0.24550 0.24156 0.23779	0-23418 0-23074 0-22746 0-22433 0-22134	0.21849
	-A'	2.00000 2.00100 2.00404 2.00920 2.01661	2.02635 2.03847 2.05293 2.06963 2.08846	2·10933 2·13214 2·15679 2·18322 2·21136	2·24113 2·27249 2·30537 2·33973 2·37550	2.41266 2.45115 2.49094 2.53197 2.57421	2.61764 2.73107 2.85105 2.97707 3.10866	3.24536 3.38678 3.53252 3.68220 3.83550	3.99209
$4p \sigma_u$	б	$\begin{array}{c} 3.0000 \\ (2.9947) \\ (2.9791) \\ 2.9546 \\ 2.9247 \end{array}$	2·8937 2·8661 2·84435 2·82922 2·82024	2.81644 2.81679 2.82037 2.82643 2.83439	2.84378 2.85428 2.86563 2.87762 2.89008	2.90290 2.91596 2.92921 2.94258 2.95602	$\begin{array}{c} 2.96949 \\ 3.00314 \\ 3.03646 \\ 3.06926 \\ 3.10142 \end{array}$	3-13287 3-16357 3-19350 3-22267 3-25108	3.27873
	d	$\begin{array}{c} 0.00000\\ (0.05007)\\ (0.10053)\\ 0.15172\\ 0.20384 \end{array}$	$\begin{array}{c} 0.25682 \\ 0.31039 \\ 0.364171 \\ 0.417840 \\ 0.471174 \end{array}$	$\begin{array}{c} 0.524049 \\ 0.576401 \\ 0.628211 \\ 0.679484 \\ 0.730234 \end{array}$	$\begin{array}{c} 0.780481 \\ 0.830245 \\ 0.879546 \\ 0.928405 \\ 0.976843 \end{array}$	$\begin{array}{c} 1.024880 \\ 1.072534 \\ 1.119817 \\ 1.166749 \\ 1.213341 \end{array}$	$\begin{array}{c} 1.259606 \\ 1.373923 \\ 1.486451 \\ 1.597340 \\ 1.706725 \end{array}$	1.814721 1.921430 2.026945 2.131352 2.234727	2.337141
	R	0.0 0.2 0.4 0.6 0.8	1.0 1.1.2 1.6 1.6 1.8	25.5 25.5 2.5 2.6 3.6 5.6	3.0 3.4. 3.6 3.6 3.6	4.0 4.2 4.4 4.6 4.8	7.000 0.000 0.000	7. 8.6. 9.6. 9.6. 9.6.	10.0
	-E	$\begin{array}{c} 0.44444 \\ (0.44603) \\ (0.45081) \\ (0.45832) \\ 0.46805 \end{array}$	$\begin{array}{c} 0.47862 \\ 0.48872 \\ 0.49729 \\ 0.50380 \\ 0.50824 \end{array}$	$\begin{array}{c} 0.51083 \\ 0.51187 \\ 0.51170 \\ 0.51058 \\ 0.50874 \end{array}$	0.50636 0.50357 0.50049 0.49720 0.49376	$\begin{array}{c} 0.49022 \\ 0.48662 \\ 0.48300 \\ 0.47936 \\ 0.47574 \end{array}$	$\begin{array}{c} 0.47214 \\ 0.46334 \\ 0.45486 \\ 0.44678 \\ 0.43910 \end{array}$	$\begin{array}{c} 0.43183 \\ 0.42497 \\ 0.41849 \\ 0.41237 \\ 0.40661 \end{array}$	0.40117
n	-A'	$\begin{array}{c} 2.00000 \\ 2.00178 \\ 2.00721 \\ 2.01649 \\ 2.02992 \end{array}$	2.04777 2.07017 2.09706 2.12826 2.16351	2·20255 2·24513 2·29104 2·34009 2·39210	2.44692 2.50439 2.56441 2.62684 2.69157	2.75848 2.82748 2.89846 2.97133 3.04600	3.12239 3.32036 3.52740 3.74241 3.96443	$\begin{array}{c} 4.19259 \\ 4.42612 \\ 4.66428 \\ 4.90643 \\ 5.15199 \end{array}$	5.40045
$3p \sigma_u$	Ь	$\begin{array}{c} 2.0000 \\ (1.9947) \\ 1.9790 \\ 1.9542 \\ 1.92338 \end{array}$	1.89092 1.86088 1.83612 1.81773 1.80540	$\begin{array}{c} 1.79829 \\ 1.79543 \\ 1.79592 \\ 1.79897 \\ 1.80402 \end{array}$	1.81061 1.81838 1.82705 1.83639 1.84625	1.85650 1.86704 1.87778 1.88867 1.89964	1.91067 1.93820 1.96544 1.99215 2.01820	2.04349 2.06798 2.09164 2.11447 2.13647	2.15766
	þ	$\begin{array}{c} 0.00000\\ (0.06679)\\ 0.13429\\ 0.20310\\ 0.273656 \end{array}$	0.345911 0.419451 0.493633 0.567833	0.714721 0.786997 0.858395 0.928913 0.998567	1.067384 1.135403 1.202667 1.269219 1.335090	1.400315 1.464926 1.528955 1.592428 1.655376	1.717820 1.871892 2.023307 2.172349 2.319263	2.464273 2.607578 2.749348 2.889735 3.028879	3.166904
	R	0.0 0.2 0.4 0.6 8.0	1.0 1.2 1.4 1.6 1.8	2.2.2.2.2.4.2.6.4.2.0.8.6.4.2.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	3.0 3.4 3.6 3.6 3.8	4.4.4.4.5.4.6.6.4.8.4.8.8.4.8.8.4.8.8.8.8.8.8.8.8	5.0 6.0 7.0	7. 9.9.9.9.5. 5.0.5.0.5.	10.0

TRANSACTIONS SOCIETY A

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

TRANSACTIONS SOCIETY A

		ON WAVI	E FUNCTI	ONS OF 7	THE HYDI	ROGEN M	OLECULA	R ION	229
	-E	0.25000 (0.25003) (0.25013) 0.25029 0.25051	0.25080 0.25116 0.25158 0.25208 0.25265	0.25329 0.25401 0.25481 0.25570 0.25669	0.25777 0.25895 0.26025 0.26167 0.26322	0.26491 0.26675 0.26875 0.27093 0.27330	0.27587 0.28324 0.29199 0.30203	0.32435 0.33549 0.34588 0.35516	0.36315 0.36977
	- <i>A'</i>	12.00000 12.00122 12.00489 12.01101 12.01960	12.03067 12.04423 12.06032 12.07896 12.10019	12-12404 12-15057 12-17983 12-21188 12-24679	$\begin{array}{c} 12.28464 \\ 12.32552 \\ 12.36954 \\ 12.41681 \\ 12.46747 \end{array}$	12-52166 12-57955 12-64135 12-70727	12.85241 13.06167 13.30632 13.59100 13.91909	14·29184 14·70816 15·16517 15·65903	16.18559 16.74077
$4f\sigma_u$	ь	3.00000 (2.99975) (2.99898) 2.99771 2.99592	2.99361 2.99078 2.98741 2.98349 2.97901	2.97395 2.96830 2.96204 2.95513 2.94755	2.93927 2.93025 2.92044 2.90980 2.89829	2.88584 2.87241 2.85794 2.84238 2.82568	2.80781 2.75798 2.70121 2.63919 2.57486	2.51174 2.45297 2.40071 2.35597	2.28899
	þ	$\begin{array}{c} 0.000000\\ (0.050003)\\ (0.100025)\\ 0.150086\\ 0.200204 \end{array}$	0.250400 0.300693 0.351105 0.401658 0.452374	0.503277 0.554393 0.605749 0.657374 0.709301	0.761563 0.814199 0.867250 0.920763 0.974787	1.029378 1.084596 1.140504 1.197174 1.254679	1.313091 1.46355 1.62109 1.78611 1.95812	2·13569 2·31684 2·49948 2·68179	2.86244 3.04045
	R	0.0 0.2 0.4 0.6 8.0	1.0 1.2 1.4 1.6 1.8	222 224 245 86 86	3.5 3.5 3.6 8.8	4.4.4.4.4.4.6.6.8.8.8.8.8.8.8.8.8.8.8.8.	7.0 6.0 7.0 7.0	7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10.0
	-E	$\begin{array}{c} 0.44444 \\ (0.44467) \\ (0.44536) \\ 0.44651 \\ 0.44817 \end{array}$	0.45037 0.45316 0.45660 0.46076 0.46572	0.47155 0.478 33 0.48609 0.49484 0.50452	$\begin{array}{c} 0.51500 \\ 0.52612 \\ 0.53761 \\ 0.54919 \\ 0.56056 \end{array}$	$\begin{array}{c} 0.57145 \\ 0.58161 \\ 0.599086 \\ 0.59905 \\ 0.60611 \end{array}$	0.61202 0.62176 0.62499 0.62292 0.61684	0.60790 0.59702 0.58495 0.57222	0.55923 0.54623
	-A' $-E$	$\begin{array}{ccc} 6.00000 & 0.44444 \\ 6.00212 & (0.44467) \\ 6.00848 & (0.44536) \\ 6.01915 & 0.44651 \\ 6.03420 & 0.44817 \end{array}$	6.05374 0.45037 6.07795 0.45316 6.10705 0.45660 6.14132 0.46076 6.18111 0.46572	$\begin{array}{ccc} 6.22686 & 0.47155 \\ 6.27910 & 0.47833 \\ 6.33845 & 0.48609 \\ 6.40560 & 0.49484 \\ 6.48125 & 0.50452 \end{array}$	$\begin{array}{ccc} 6.56613 & 0.51500 \\ 6.66089 & 0.52612 \\ 6.76604 & 0.53761 \\ 6.88196 & 0.54919 \\ 7.00882 & 0.56056 \end{array}$	$\begin{array}{cccc} 7.14665 & 0.57145 \\ 7.29530 & 0.58161 \\ 7.45449 & 0.59086 \\ 7.62389 & 0.59905 \\ 7.80307 & 0.60611 \end{array}$	$\begin{array}{ccc} 7.99160 & 0.61202 \\ 8.50054 & 0.62176 \\ 9.05721 & 0.62499 \\ 9.65443 & 0.62292 \\ 10.28578 & 0.61684 \end{array}$	10.94565 0.60790 11.62919 0.59702 12.33247 0.58495 13.05223 0.57222 13.5562 0.55603	
$3d\sigma_{g}$	1					•			13.78508 14.53058
$3d\sigma_{\scriptscriptstyle B}$	A'	6.00000 6.00212 (6.00848 (6.01915 6.03420	6.05374 6.07795 6.10705 6.14132 6.18111	6.22686 6.27910 6.33845 6.40560 6.48125	$\begin{array}{c} 6.56613 \\ 6.66089 \\ 6.76604 \\ 6.88196 \\ 7.00882 \end{array}$	7.14665 7.29530 7.45449 7.62389 7.80307	7.99160 8.50054 9.05721 9.65443 10.28578	10.94565 11.62919 12.33247 13.05223	1.07440 15.78508 1.70608 14.53058

Table 1. The basic parameters (cont.)

230

		$2p \pi_u$	72		•		$3d\pi_{g}$			
R	d	Ь	- <i>A</i> ′	-E	R	þ	Ь	A'	-E	
0.0	0.00000	0.00000 (0.00260)	$2.00000 \ 2.00798 \ 9.09167$	1.00000 (0.99740)	0.0	0.000000 (0.066676)	$\begin{array}{c} 1.00000 \\ (0.99956) \\ 0.00846) \end{array}$	6.00000 6.00254	0.44444 (0.44457)	-
. 0 C	0.29677	$egin{pmatrix} 0.01012 \ (0.02176) \ 0.03659 \ \end{bmatrix}$	2.0510I 2.07042 9.19333	$egin{pmatrix} (0.98893) \ (0.97860) \ (0.96430) \end{bmatrix}$	# 9 0 ° 0	$egin{pmatrix} 0.105402 \ (0.200224) \ 0.267188 \ \end{bmatrix}$	$egin{pmatrix} 0.39665 \ 0.99665 \ 0.99415 \ \end{bmatrix}$	6.02290 6.04078	$egin{pmatrix} 0.445490 \ 0.44544 \end{pmatrix} \ 0.44618 \ \end{array}$	
5 (# 0766 O		00001	201000) (70,000			
9.7	$0.48688 \\ 0.57886$	$0.05389 \\ 0.07303$	$2.18938 \\ 2.26755$	$0.94821 \\ 0.93078$	1.5	$0.334332 \\ 0.401683$	$0.99104 \\ 0.98743$	$6.06383 \\ 6.09210$	$0.44711 \\ 0.44819$	
1.4	0.66873	0.09352	2.35684	0.91265	4.	0.469258	0.98343	6.12564	0.44939	- ,
1.8	$0.75650 \\ 0.84225$	$0.11499 \\ 0.13713$	2.45633 2.56517	0.89422 0.87579	1.8	$0.537065 \\ 0.605100$	$0.97915 \\ 0.97471$	6.16450 6.20871	$0.45069 \ 0.45203$	
2.0	0.92604	0.15973	2.68260	0.85755	2.0	0.673350	0.97022	6.25829	0.45340	
2.7	1.00795	0.18264	2.80794	0.83965	2.2	0.741788	0.96581	6.31325	0.45475	
2.4	1.08809	0.20570	2.94054	0.82218	2.6	0.810376	0.96159	6.37358	0.45605	_
, 67 50 50 50 50 50 50 50 50 50 50 50 50 50	1.24338	0.25192	3.22541	0.78878	2.8	0.947858	0.95403	6.51024	0.45839	
3.0	1.31871	0.27495	3.37672	0.77289	3.0	1.016655	0.95085	6.58645	0.45937	
3.5	1.39261	0.29785	3.53337	0.75756	3.2	1.085421	0.94816	6.66780	0.46021	
3.4	1.46514	0.32060	3.69499	0.74278	4.5	1.154112	0.94599	6.75420	0.46089	
3.6 9.6	1.53639	0.34316	3.86125	0.72854	3.6	1.222679	0.94435	6.84553	0.46140	-
3.8	1.60642	0.36551	4.03183	0.71484	3.8	1.291080	0.94327	6.94165	0.46174	
4.0	1.67529	0.38764	4.20645	0.70165	4.0	1.359273	0.94275	7.04244	0.46191	
4.2	1.74307	0.40954	4.38486	$0.6889 \cdot 0$	4.2	1.427223	0.94278	7.14774	0.46190	
4.	1.80981	0.43119	4.56679	0.67674	4.	1.494895	0.94335	7.25743	0.46172	
4.6 6.8	1.87557 1.94039	$0.45259 \\ 0.47373$	4.75203 4.94038	0.66498 0.65366	4.0 4.8	$1.562264 \\ 1.629304$	$0.94444 \\ 0.94604$	7.37133 7.48930	0.46137 0.46087	
,	9.00499	0.40461	2.19164	0.84977	ri G	1.808000	0.04611	7.61191	. 48099	
o ro o ro	2.00452 2.16054	0.54566	5.62144	0.61725	i i i	1.861112	0.9552	7.93213	0.45801	
0.9	2.31211	0.59503	6.12587	0.59398	0.9	2.023781	0.96475	8.27437	0.45508	_
6.5	2.45955	0.64275	6.64279	0.57272	6.51	2.183942	0.97627	8.63580	0.45156	
7.0	2.60336	0.68883	7.17030	0.55326	7.0	2.341593	0.98942	9.01448	0.44760	
7.5	2.74395	0.73328	7.70674	0.53542	7.5	2.496790	1.00386	9.40862	0.44330	
0·8	2.88172	0.77612	8.25062	0.51902	0.8	2.649626	1.01929	9.81663	0.43878	
တ် တွင်	3.01702 3.15017	0.81735	8.80057 0.25525	0.50394 0.49005	င် လိုင်	2.800213	1.03548	10.23705	0.43411	
9.5	3.28145	0.89507	9.91378	0.47725	9.5	3.095131	1.06934	11.11000	0.42459	
10.0	3.41113	0.93158	10.47479	0.4654 3	10.0	3.239724	1.08668	11.56029	0.41983	

OF	
(7)	
μ EXPANSION	
THE	
OF	
E 2. THE COEFFICIENTS	
THE	
Table 2.	
	$1s\sigma_g$

TEXT)

							_	
f_{12}		.					0000000	0.000001
f_{10}						0.00000 0.000001 0.000001	0.000003 0.000005 0.000009 0.000015 0.000024	0.000039
f_8		1 1 1 1 1	~	0.000000 0.000001 0.000001 0.000001	$\begin{array}{c} 0.000002\\ 0.000003\\ 0.000004\\ 0.000005\\ 0.000007\end{array}$	$\begin{array}{c} 0.000009 \\ 0.000018 \\ 0.000034 \\ 0.000060 \\ 0.000102 \end{array}$	$\begin{array}{c} 0.000170 \\ 0.000274 \\ 0.000432 \\ 0.000666 \\ 0.001009 \end{array}$	0.001503
f_6		0.000000 0.000001 0.000003 0.000003	0.000006 0.000009 0.000014 0.000022 0.000033	0.000047 0.000066 0.000090 0.000122 0.000162	0.000213 0.000275 0.000353 0.000447 0.000561	$\begin{array}{c} 0.000698 \\ 0.001169 \\ 0.001883 \\ 0.002937 \\ 0.004459 \end{array}$	$\begin{array}{c} 0.006615 \\ 0.009620 \\ 0.013747 \\ 0.019342 \\ 0.026839 \end{array}$	0.036771
f_4	0.000000 0.000003 0.000013 0.000013	0.000087 0.000169 0.000296 0.000479 0.000730	$\begin{array}{c} 0.001064 \\ 0.001494 \\ 0.002035 \\ 0.002706 \\ 0.003523 \end{array}$	$\begin{array}{c} 0.004505 \\ 0.005674 \\ 0.007050 \\ 0.008660 \\ 0.010527 \end{array}$	$\begin{array}{c} 0.012680 \\ 0.015150 \\ 0.017970 \\ 0.021173 \\ 0.024798 \end{array}$	$\begin{array}{c} 0.028887 \\ 0.04144 \\ 0.05796 \\ 0.07942 \\ 0.10697 \end{array}$	$\begin{array}{c} 0.14197 \\ 0.18606 \\ 0.24114 \\ 0.30945 \\ 0.39360 \end{array}$	0.49661
f_{2}	0.00000 0.00109 0.00423 0.00919 0.01580	$\begin{array}{c} 0.02393\\ 0.03352\\ 0.04448\\ 0.05680\\ 0.07046 \end{array}$	$\begin{array}{c} 0.08546 \\ 0.10180 \\ 0.11950 \\ 0.13859 \\ 0.15911 \end{array}$	$\begin{array}{c} 0.18110 \\ 0.20463 \\ 0.22974 \\ 0.25651 \\ 0.28500 \end{array}$	$\begin{array}{c} 0.31530 \\ 0.34749 \\ 0.38167 \\ 0.41794 \\ 0.45642 \end{array}$	$\begin{array}{c} 0.49722 \\ 0.61022 \\ 0.74070 \\ 0.8912 \\ 1.0647 \end{array}$	1.2643 1.4938 1.7573 2.0593 2.4050	2.8000
f_0	$\begin{array}{c} 1.0000 \\ 1.0006 \\ 1.0020 \\ 1.0045 \\ 1.0079 \end{array}$	$\begin{array}{c} 1.0120 \\ 1.0167 \\ 1.0221 \\ 1.0282 \\ 1.0349 \end{array}$	$1.0423 \\ 1.0503 \\ 1.0590 \\ 1.0683 \\ 1.0782$	$\begin{array}{c} 1.0889 \\ 1.1002 \\ 1.1122 \\ 1.1250 \\ 1.1250 \end{array}$	$\begin{array}{c} 1.1529 \\ 1.1681 \\ 1.1842 \\ 1.2012 \\ 1.2191 \end{array}$	$\begin{array}{c} 1.2380 \\ 1.2899 \\ 1.3492 \\ 1.4167 \\ 1.4935 \end{array}$	$\begin{array}{c} 1.5809 \\ 1.6801 \\ 1.7924 \\ 1.9195 \\ 2.0630 \end{array}$	2.2248
R	0.0 0.2 0.4 0.6 0.8	0.1.1.1.0.2.4.0.1.8.1.0.1.0.1.1.1.1.1.1.1.1.1.1.1.1.1	0.74.29 0.44.08	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	44444 64444 88	5.5 6.0 7.0 7.0	88.0 9.5 9.5 9.5	10.0
f_{14}				1111		00000000	0-000001 0-000002 0-000004 0-0000009	
f_{12}						0.000000 0.000001 0.000002 0.000006 0.000013	$\begin{array}{c} 0.000030 \\ 0.000066 \\ 0.000138 \\ 0.000280 \end{array}$	
f_{10}				$\begin{array}{c}\\ 0.000000\\ 0.000001\\ 0.000001\\ 0.000002 \end{array}$	$\begin{array}{c} 0.000003\\ 0.000004\\ 0.000006\\ 0.000009\\ 0.000013 \end{array}$	$\begin{array}{c} 0.000019 \\ 0.000047 \\ 0.000107 \\ 0.000233 \\ 0.000487 \end{array}$	$\begin{array}{c} 0.000980 \\ 0.001904 \\ 0.003587 \\ 0.006572 \end{array}$	
f_8			0.000003 0.000003 0.000005 0.000009 0.000015	$\begin{array}{c} 0.000023 \\ 0.000036 \\ 0.000054 \\ 0.000080 \\ 0.000117 \end{array}$	$\begin{array}{c} 0.000167 \\ 0.000236 \\ 0.000330 \\ 0.000456 \\ 0.000624 \end{array}$	$\begin{array}{c} 0.000846 \\ 0.001751 \\ 0.003469 \\ 0.006620 \\ 0.01221 \end{array}$	$\begin{array}{c} 0.02187 \\ 0.03811 \\ 0.06478 \\ 0.10772 \end{array}$	
f_6		$\begin{array}{c} 0.000006 \\ 0.000014 \\ 0.000031 \\ 0.000061 \\ 0.000109 \end{array}$	0.000184 0.000295 0.000456 0.000683 0.000995	$\begin{array}{c} 0.001418 \\ 0.001981 \\ 0.002723 \\ 0.003690 \\ 0.004937 \end{array}$	$\begin{array}{c} 0.006535 \\ 0.008565 \\ 0.011129 \\ 0.014348 \\ 0.018365 \end{array}$	$\begin{array}{c} 0.023352\\ 0.04151\\ 0.07144\\ 0.11960\\ 0.19533 \end{array}$	0.31201 0.48848 0.75111 1.13645	
f_4	$\begin{array}{c} 0.000000\\ 0.000003\\ 0.000040\\ 0.000177\\ 0.000495 \end{array}$	$\begin{array}{c} 0.001076 \\ 0.002014 \\ 0.003407 \\ 0.005362 \\ 0.008001 \end{array}$	$\begin{array}{c} 0.011461 \\ 0.015898 \\ 0.021492 \\ 0.028449 \\ 0.037006 \end{array}$	$\begin{array}{c} 0.047438 \\ 0.060064 \\ 0.07525 \\ 0.09342 \\ 0.11506 \end{array}$	$\begin{array}{c} 0.14072 \\ 0.17106 \\ 0.20680 \\ 0.24877 \\ 0.29792 \end{array}$	0.35531 0.5432 0.8141 1.1990 1.7388	2.4873 3.5141 4.9103 6.7945	
f_2	$\begin{array}{c} 0.00000\\ 0.00430\\ 0.01621\\ 0.03432\\ 0.05774 \end{array}$	$\begin{array}{c} 0.08598 \\ 0.11886 \\ 0.15634 \\ 0.19859 \\ 0.24584 \end{array}$	$\begin{array}{c} 0.29844 \\ 0.35680 \\ 0.42144 \\ 0.49296 \\ 0.57208 \end{array}$	0.65953 0.7563 0.8632 0.9816 1.1126	$\begin{array}{c} 1.2575 \\ 1.4179 \\ 1.5956 \\ 1.7922 \\ 2.0099 \end{array}$	2·2507 2·9709 3·8956 5·0798 6·5911		
f_0	$\begin{array}{c} 1.0000 \\ 1.0020 \\ 1.0081 \\ 1.0171 \\ 1.0287 \end{array}$	$1.0426 \\ 1.0587 \\ 1.0769 \\ 1.0973 \\ 1.1199$	1.1450 1.1725 1.2028 1.2360 1.2724	$\begin{array}{c} 1.3124 \\ 1.3562 \\ 1.4043 \\ 1.4569 \\ 1.5146 \end{array}$	1.5780 1.6475 1.7236 1.8071 1.8988	1.9992 2.2942 2.6640 3.1259 3.7012	4.4164 8.515 5.303610.957 6.402914.053 7.764917.971	
∝ Voi	0 7 7 9 8 0 0 0 0 0	0.11 w m m m 0.25 %	2.2.2.0 2.4.2.2 3.6 8.5	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	4.4 4.4 4.8 8.8	7 6 6 57 0	30 7. 80 80 9. 7. 60 70 9.	

Table 2. The coefficients of the μ expansion ((7) of text) (cont.)

232

	f_{13}						0.000000	0.000001 0.000003 0.000007 0.000013	
	f_{11}					0.000001	$\begin{array}{c} 0.000001\\ 0.000003\\ 0.000006\\ 0.000014\\ 0.000028 \end{array}$	0.000057 0.000109 0.000203 0.000366	
	f_9			000000000	$\begin{array}{c} 0.000001\\ 0.000002\\ 0.000003\\ 0.000004\\ 0.000006 \end{array}$	$\begin{array}{c} 0.000010 \\ 0.000014 \\ 0.000021 \\ 0.000030 \\ 0.000042 \end{array}$	$\begin{array}{c} 0.000058 \\ 0.000124 \\ 0.000250 \\ 0.000477 \\ 0.000875 \end{array}$	$\begin{array}{c} 0.001548 \\ 0.002655 \\ 0.004438 \\ 0.007255 \end{array}$	
$2p\sigma_u$	f_7		0.000000 0.000001 0.000001 0.000003	$\begin{array}{c} 0.000006 \\ 0.000012 \\ 0.000021 \\ 0.000035 \\ 0.000057 \end{array}$	$\begin{array}{c} 0.000089 \\ 0.000135 \\ 0.000197 \\ 0.000282 \\ 0.000395 \end{array}$	$\begin{array}{c} 0.000543 \\ 0.000734 \\ 0.000979 \\ 0.001288 \\ 0.001675 \end{array}$	0.002156 0.003896 0.006717 0.011155 0.017963	$\begin{array}{c} 0.028193 \\ 0.043288 \\ 0.065247 \\ 0.09683 \end{array}$	
	f_5	$\begin{array}{c} \\ 0.000000 \\ 0.000001 \\ 0.000004 \\ 0.000014 \end{array}$	$\begin{array}{c} 0.000037 \\ 0.000083 \\ 0.000168 \\ 0.000310 \\ 0.000532 \end{array}$	$\begin{array}{c} 0.000861 \\ 0.001326 \\ 0.001959 \\ 0.002796 \\ 0.003876 \end{array}$	$\begin{array}{c} 0.005241 \\ 0.006940 \\ 0.009023 \\ 0.011547 \\ 0.014578 \end{array}$	$\begin{array}{c} 0.018184 \\ 0.022443 \\ 0.027442 \\ 0.033275 \\ 0.040049 \end{array}$	$\begin{array}{c} 0.047882 \\ 0.072989 \\ 0.10804 \\ 0.15620 \\ 0.22158 \end{array}$	0.30950 0.42668 0.58183 0.78609	
	f_3	$\begin{array}{c} 0.000000\\ 0.000402\\ 0.001638\\ 0.003794\\ 0.007009 \end{array}$	$\begin{array}{c} 0.01146 \\ 0.01732 \\ 0.02474 \\ 0.03381 \\ 0.04461 \end{array}$	$\begin{array}{c} 0.05717 \\ 0.07155 \\ 0.08778 \\ 0.10594 \\ 0.12608 \end{array}$	$\begin{array}{c} 0.14832 \\ 0.17276 \\ 0.19952 \\ 0.22877 \\ 0.26067 \end{array}$	$\begin{array}{c} 0.29540 \\ 0.33318 \\ 0.37423 \\ 0.41882 \\ 0.46722 \end{array}$	$\begin{array}{c} 0.51974 \\ 0.6714 \\ 0.8572 \\ 1.0849 \\ 1.3639 \end{array}$	1.7061 2.1260 2.6415 3.2748	. `
	f_1	$\begin{array}{c} 1.0000 \\ 1.0006 \\ 1.0025 \\ 1.0057 \\ 1.0105 \end{array}$	$\begin{array}{c} 1.0171 \\ 1.0258 \\ 1.0368 \\ 1.0502 \\ 1.0660 \end{array}$	$\begin{array}{c} 1.0842 \\ 1.1048 \\ 1.1280 \\ 1.1537 \\ 1.1820 \end{array}$	$\begin{array}{c} 1.2129 \\ 1.2464 \\ 1.2828 \\ 1.3222 \\ 1.3646 \end{array}$	1.4102 1.4593 1.5120 1.5686 1.6293	1.6944 1.8784 2.0973 2.3577 2.6676	3.0369 3.4774 4.0036 4.6331	
	R	0.0 0.7 4.0 0.0 8.0		2.2.2.2.2.2.4.5.8.0.2.4.0.8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	66666 67468	44444 0.4448 0.4498	766500	7.88.0 0.00.0	
	f_{10}							0.000000 0.0000001 0.0000001	0.000001
	f_8 f_{10}					000000-0	0.000001 — 0.000001 — 0.000002 — 0.000004 — 0.000007		0.000098 0.0000001
. 30			00000000	0.000001 — — — — — — — — — — — — — — — — —	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000027 — 0.000036 — 0.000046 — 0.000058 — 0.000073 0.000000		0-000000 0-000001 0-000001	
350g	f_8	0.000000 0.000000 0.0000003 0.0000008			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0-000001 — — — — — — — — — — — — — — — — —	0.000012 — — — — — — — — — — — — — — — — — — —	86000000
350g	f_6 f_8			0-000001		$\begin{array}{c} 0.000027 \\ 0.000036 \\ 0.000046 \\ 0.000058 \\ 0.000073 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.004310 0.000098
350g	f_4 f_6 f_8	0-000000 0-000001	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.001094 \\ 0.001384 \\ 0.001726 \\ 0.002126 \\ 0.002589 \end{array}$	0-003123 0-000027 0-003733 0-000036 0-004427 0-000046 0-005212 0-000058 0-006097 0-000073	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0.032845 0.000839 0.000012 — 7 0.042299 0.001204 0.000019 — 8 0.053813 0.001696 0.000009 0.000000 9 0.067729 0.002347 0.000001 0.08444 0.003202 0.0000067 0.000001	0.10439 0.004310 0.000098

TRANSACTIONS SOCIETY A

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

TRANSACTIONS SOCIETY A

	f_9						0.000001	0.000001 0.000002 0.000003 0.000004 0.000006	60000000
	f_7	,		00000000	$\begin{array}{c} 0.000001\\ 0.000001\\ 0.000001\\ 0.000002\\ 0.000002 \end{array}$	$\begin{array}{c} 0.000003\\ 0.000004\\ 0.000005\\ 0.000007\\ 0.000008 \end{array}$	$\begin{array}{c} 0.000011\\ 0.000018\\ 0.000029\\ 0.000046\\ 0.000069 \end{array}$	$\begin{array}{c} 0.000102 \\ 0.000146 \\ 0.000205 \\ 0.000283 \\ 0.000383 \end{array}$	0.000511
$^4 p \sigma_u$	f_{5}	0.000000	0.000002 0.000004 0.000008 0.000014 0.000023	0.000035 0.000051 0.000072 0.000099 0.000132	$\begin{array}{c} 0.000173 \\ 0.000223 \\ 0.000282 \\ 0.000351 \\ 0.000432 \end{array}$	$\begin{array}{c} 0.000526 \\ 0.000634 \\ 0.000757 \\ 0.000896 \\ 0.001054 \end{array}$	$\begin{array}{c} 0.001231 \\ 0.001767 \\ 0.002458 \\ 0.003330 \\ 0.004414 \end{array}$	$\begin{array}{c} 0.005742 \\ 0.007350 \\ 0.009278 \\ 0.011570 \\ 0.014273 \end{array}$	0.017441
	f_3	$\begin{array}{c} 0.000000\\ 0.000100\\ 0.000404\\ 0.000922\\ 0.001665 \end{array}$	$\begin{array}{c} 0.002647 \\ 0.003873 \\ 0.005341 \\ 0.007046 \\ 0.008982 \end{array}$	$\begin{array}{c} 0.011140 \\ 0.013517 \\ 0.016107 \\ 0.018909 \\ 0.021919 \end{array}$	$\begin{array}{c} 0.025136 \\ 0.028561 \\ 0.032192 \\ 0.036030 \\ 0.040076 \end{array}$	$\begin{array}{c} 0.044332 \\ 0.048798 \\ 0.053479 \\ 0.058374 \\ 0.063488 \end{array}$	$\begin{array}{c} 0.068823 \\ 0.08315 \\ 0.09894 \\ 0.11627 \\ 0.13520 \end{array}$	$\begin{array}{c} 0.15583 \\ 0.17827 \\ 0.20262 \\ 0.22902 \\ 0.25759 \end{array}$	0.28848
	f_1	1.0000 1.0001 1.0006 1.0014 1.0025	$\begin{array}{c} 1.0040 \\ 1.0058 \\ 1.0080 \\ 1.0105 \\ 1.0134 \end{array}$	$\begin{array}{c} 1.0166 \\ 1.0202 \\ 1.0240 \\ 1.0282 \\ 1.0326 \end{array}$	1.0374 1.0424 1.0478 1.0534 1.0593	$\begin{array}{c} 1.0656 \\ 1.0720 \\ 1.0788 \\ 1.0859 \\ 1.0932 \end{array}$	1.1009 1.1214 1.1439 1.1683 1.1947	$\begin{array}{c} 1.2232 \\ 1.2540 \\ 1.2870 \\ 1.3225 \\ 1.3605 \end{array}$	1.4012
	R	0.0 0.2 0.4 0.6 0.8	1.0 1.2 1.4 1.6 1.8	2220 2222 26423	3.0 3.4 3.6 3.8 3.8	4.0 4.4 4.6 4.6 8.8	5.0 6.0 7.0 7.0	7 8 8 9 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 6 6 6 6 6	10.0
	f_{11}							0.00000 0.000001 0.000001 0.000002	0.00000
	f_9					0000000	0.000001 0.000001 0.000003 0.000005 0.000008	$\begin{array}{c} 0.000014 \\ 0.000023 \\ 0.000035 \\ 0.000054 \\ 0.000082 \end{array}$	0.000121
'n	f_7			$\begin{array}{c} 0.000000\\ 0.000001\\ 0.000001\\ 0.000002\\ 0.000003 \end{array}$	$\begin{array}{c} 0.000004 \\ 0.000006 \\ 0.000008 \\ 0.000011 \\ 0.000015 \end{array}$	$\begin{array}{c} 0.000020 \\ 0.000027 \\ 0.000035 \\ 0.000045 \\ 0.000057 \end{array}$	$\begin{array}{c} 0.000072 \\ 0.000124 \\ 0.000203 \\ 0.000320 \\ 0.000487 \end{array}$	$\begin{array}{c} 0.000721 \\ 0.001043 \\ 0.001479 \\ 0.002059 \\ 0.002822 \end{array}$	0.003815
$3p\sigma_u$	f_5	$\begin{array}{c}\\ 0.000000\\ 0.000001\\ 0.000003 \end{array}$	$\begin{array}{c} 0.000007 \\ 0.000014 \\ 0.000027 \\ 0.000048 \\ 0.000078 \end{array}$	$\begin{array}{c} 0.000121 \\ 0.000179 \\ 0.000255 \\ 0.000352 \\ 0.000473 \end{array}$	$\begin{array}{c} 0.000621 \\ 0.000801 \\ 0.001016 \\ 0.001270 \\ 0.001568 \end{array}$	$\begin{array}{c} 0.001913 \\ 0.002311 \\ 0.002768 \\ 0.003287 \\ 0.003870 \end{array}$	$\begin{array}{c} 0.004538 \\ 0.006564 \\ 0.009206 \\ 0.012587 \\ 0.016850 \end{array}$	$\begin{array}{c} 0.022158 \\ 0.028697 \\ 0.036679 \\ 0.046349 \\ 0.057984 \end{array}$	0.071902
	f_3	$\begin{array}{c} 0.00000\\ 0.00018\\ 0.00072\\ 0.00165\\ 0.00301 \end{array}$	$\begin{array}{c} 0.00482 \\ 0.00710 \\ 0.00987 \\ 0.01311 \\ 0.01682 \end{array}$	$\begin{array}{c} 0.02097 \\ 0.02557 \\ 0.03060 \\ 0.03607 \\ 0.04197 \end{array}$	$\begin{array}{c} 0.04830 \\ 0.05508 \\ 0.06229 \\ 0.06996 \\ 0.07809 \end{array}$	$\begin{array}{c} 0.08670 \\ 0.09577 \\ 0.10537 \\ 0.11546 \\ 0.12607 \end{array}$	$\begin{array}{c} 0.13723 \\ 0.16759 \\ 0.20175 \\ 0.24005 \\ 0.28289 \end{array}$	0.33074 0.38409 0.44354 0.50971 0.58333	0.66522
	f_1	$\begin{array}{c} 1.0000 \\ 1.0003 \\ 1.0011 \\ 1.0025 \\ 1.0045 \end{array}$	$\begin{array}{c} 1.0072 \\ 1.0107 \\ 1.0148 \\ 1.0196 \\ 1.0251 \end{array}$	$\begin{array}{c} 1.0312 \\ 1.0380 \\ 1.0454 \\ 1.0535 \\ 1.0621 \end{array}$	$\begin{array}{c} 1.0713 \\ 1.0811 \\ 1.0915 \\ 1.1025 \\ 1.1142 \end{array}$	$\begin{array}{c} 1.1265 \\ 1.1394 \\ 1.1529 \\ 1.1672 \\ 1.1820 \end{array}$	1.1975 1.2394 1.2858 1.3372	1.4561 1.5246 1.5997 1.6820 1.7723	1.8710
	R	0.0 0.0 4.0 0.8	0.1.2 1.2.4 1.6 8.1	2.2.2.2.2.2.4.2.8 8.4.2.8	3.5 3.5 3.6 3.6 8.8	4.0 4.4 4.4 8.8	5.5. 7.0 7.0	7.5 8.0 8.5 9.0	10.0

(cont.
F TEXT)
(7) OF
$\overline{}$
THE μ EXPANSION
TS OF THE
COEFFICIEN
THE
TABLE 2.

								000 001 003 003	800
	\int_{11}							0.000000 0.000001 0.000002 0.000003 0.000005	0.00000
	f_9				0000000	0.000001 0.000001 0.000001 0.000001 0.000002	0.000002 0.000004 0.000008 0.000014 0.000025	$\begin{array}{c} 0.000043 \\ 0.000070 \\ 0.000112 \\ 0.000174 \\ 0.000261 \end{array}$	0.000381
,	f_7		0.000000 0.000001 0.000002 0.000003 0.000005	$\begin{array}{c} 0.000008 \\ 0.000011 \\ 0.000016 \\ 0.000022 \\ 0.000030 \end{array}$	$\begin{array}{c} 0.000040 \\ 0.000052 \\ 0.000067 \\ 0.000085 \\ 0.000107 \end{array}$	$\begin{array}{c} 0.000134 \\ 0.000165 \\ 0.000202 \\ 0.000246 \\ 0.000297 \end{array}$	$\begin{array}{c} 0.000356 \\ 0.000553 \\ 0.000837 \\ 0.001242 \\ 0.001808 \end{array}$	$\begin{array}{c} 0.002583\\ 0.003616\\ 0.004959\\ 0.006664\\ 0.008784 \end{array}$	0.01137
$4f\sigma_u$	$f_{\overline{z}}$	$\begin{array}{c} 0.000000\\ 0.000044\\ 0.000176\\ 0.000397\\ 0.000707 \end{array}$	$\begin{array}{c} 0.001107 \\ 0.001596 \\ 0.002177 \\ 0.002850 \\ 0.003617 \end{array}$	$\begin{array}{c} 0.004479 \\ 0.005438 \\ 0.006496 \\ 0.007656 \\ 0.008920 \end{array}$	$\begin{array}{c} 0.010291 \\ 0.011773 \\ 0.013370 \\ 0.015086 \\ 0.016927 \end{array}$	$\begin{array}{c} 0.018898 \\ 0.021005 \\ 0.023258 \\ 0.025664 \\ 0.028232 \end{array}$	$\begin{array}{c} 0.030974 \\ 0.038659 \\ 0.047696 \\ 0.058284 \\ 0.070599 \end{array}$	$\begin{array}{c} 0.084749 \\ 0.10078 \\ 0.11869 \\ 0.13844 \\ 0.16002 \end{array}$	0.18341
	f_3	$\begin{array}{c} 1.00000 \\ 1.00003 \\ 1.00011 \\ 1.00024 \\ 1.00043 \end{array}$	$\begin{array}{c} 1.00067 \\ 1.00096 \\ 1.00131 \\ 1.00172 \\ 1.00218 \end{array}$	$\begin{array}{c} 1.00270 \\ 1.00327 \\ 1.00390 \\ 1.00460 \\ 1.00535 \end{array}$	$\begin{array}{c} 1.00617 \\ 1.00706 \\ 1.00801 \\ 1.00903 \\ 1.01013 \end{array}$	$\begin{array}{c} 1.01130 \\ 1.01255 \\ 1.01389 \\ 1.01532 \\ 1.01684 \end{array}$	$\begin{array}{c} 1.01846 \\ 1.02298 \\ 1.02830 \\ 1.03451 \\ 1.04170 \end{array}$	$\begin{array}{c} 1.04995 \\ 1.05928 \\ 1.06971 \\ 1.08119 \\ 1.09373 \end{array}$	1.10735
	f_1	$\begin{array}{c} -0.000000\\ -0.000043\\ -0.000172\\ -0.000386\\ -0.000687 \end{array}$	$\begin{array}{c} -0.001075 \\ -0.001550 \\ -0.002114 \\ -0.002766 \\ -0.003509 \end{array}$	$\begin{array}{c} -0.004344 \\ -0.005272 \\ -0.006294 \\ -0.007413 \\ -0.008631 \end{array}$	$\begin{array}{c} -0.009952\\ -0.011376\\ -0.012908\\ -0.014551\\ -0.016311 \end{array}$	$\begin{array}{c} -0.018192 \\ -0.020199 \\ -0.022338 \\ -0.024616 \\ -0.027041 \end{array}$	$\begin{array}{c} -0.029621\\ -0.036810\\ -0.045172\\ -0.054849\\ -0.065930 \end{array}$	$\begin{array}{c} -0.078432 \\ -0.092296 \\ -0.10741 \\ -0.12363 \\ -0.14084 \end{array}$	-0.15891
	R	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.11 0.4.11 1.8	0,7,7,7,0	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7.0 7.0 7.0 7.0	2.0 2.0 3.0 3.0 3.0 3.0	10.0
1 2 1									
								00 01 01 01	20
	f_{12}							0.000000 0.000001 0.000001 0.000001	0.00000
	f_{10}						$\begin{array}{c} 0.000000\\ 0.000001\\ 0.000002\\ 0.000004\\ 0.000007 \end{array}$	0.000011 0.000017 0.000026 0.000039 0.000055	0.000078
;	f_8			0.00000 0.000001 0.000001	0.000001 0.000002 0.000003 0.000005 0.000005	$\begin{array}{c} 0.000010 \\ 0.000014 \\ 0.000019 \\ 0.000026 \\ 0.000035 \end{array}$	$\begin{array}{c} 0.000046 \\ 0.000083 \\ 0.000140 \\ 0.000222 \\ 0.000334 \end{array}$	$\begin{array}{c} 0.000483 \\ 0.000676 \\ 0.000921 \\ 0.001230 \\ 0.001614 \end{array}$	0.002088
$3d\sigma_{g}$	f_6		$\begin{array}{c} 0.000003\\ 0.000005\\ 0.000010\\ 0.000018\\ 0.000029 \end{array}$	0.000045 0.000068 0.000099 0.000141 0.000196	$\begin{array}{c} 0.000268 \\ 0.000360 \\ 0.000477 \\ 0.000621 \\ 0.000799 \end{array}$	$\begin{array}{c} 0.001012\\ 0.001265\\ 0.001561\\ 0.001902\\ 0.002291 \end{array}$	$\begin{array}{c} 0.002730 \\ 0.004051 \\ 0.005706 \\ 0.007709 \\ 0.010078 \end{array}$	$\begin{array}{c} 0.012840 \\ 0.016032 \\ 0.019698 \\ 0.023896 \\ 0.028692 \end{array}$	0.034162
	f_4	$\begin{array}{c} 0.000000\\ 0.000109\\ 0.000436\\ 0.000983\\ 0.001753 \end{array}$	$\begin{array}{c} 0.002749 \\ 0.003977 \\ 0.005446 \\ 0.007164 \\ 0.009143 \end{array}$	$\begin{array}{c} 0.011400 \\ 0.013951 \\ 0.016815 \\ 0.020014 \\ 0.023566 \end{array}$	$\begin{array}{c} 0.027485 \\ 0.031782 \\ 0.036454 \\ 0.041490 \\ 0.046871 \end{array}$	$\begin{array}{c} 0.052567 \\ 0.058546 \\ 0.064769 \\ 0.071198 \\ 0.077799 \end{array}$	$\begin{array}{c} 0.084541 \\ 0.10183 \\ 0.11954 \\ 0.13753 \\ 0.15587 \end{array}$	0.17464 0.19400 0.21416 0.23529 0.25760	0.28128
	f_2	$\begin{array}{c} 1.00000\\ 0.99988\\ 0.99953\\ 0.99896\\ 0.99813 \end{array}$	$\begin{array}{c} 0.99706 \\ 0.99573 \\ 0.99413 \\ 0.99224 \\ 0.99004 \end{array}$	$\begin{array}{c} 0.98751 \\ 0.98463 \\ 0.98135 \\ 0.97764 \\ 0.97347 \end{array}$	$\begin{array}{c} 0.96878 \\ 0.96356 \\ 0.95780 \\ 0.95147 \\ 0.94460 \end{array}$	$\begin{array}{c} 0.93720 \\ 0.92932 \\ 0.92101 \\ 0.91234 \\ 0.90335 \end{array}$	$\begin{array}{c} 0.89412 \\ 0.87047 \\ 0.84683 \\ 0.82401 \\ 0.80262 \end{array}$	$\begin{array}{c} 0.78300 \\ 0.76529 \\ 0.74950 \\ 0.73555 \\ 0.72328 \end{array}$	0.71257
	f_0	$\begin{array}{c} -0.000000\\ -0.000099\\ -0.000396\\ -0.000893\\ -0.001594 \end{array}$	$\begin{array}{c} -0.002504 \\ -0.003628 \\ -0.004978 \\ -0.006563 \\ -0.008398 \end{array}$	$\begin{array}{c} -0.010502\\ -0.012894\\ -0.015598\\ -0.018641\\ -0.022046 \end{array}$	$\begin{array}{c} -0.025835 \\ -0.030026 \\ -0.034627 \\ -0.039633 \\ -0.045031 \end{array}$	$\begin{array}{c} -0.050799 \\ -0.056902 \\ -0.063298 \\ -0.069946 \\ -0.076796 \end{array}$	$\begin{array}{c} -0.083803 \\ -0.10171 \\ -0.11967 \\ -0.13722 \\ -0.15408 \end{array}$	$\begin{array}{c} -0.17011 \\ -0.18526 \\ -0.19964 \\ -0.21332 \\ -0.22642 \end{array}$	-0.23907

TRANSACTIONS SOCIETY A

TRANSACTIONS SOCIETY A

	f_9						0.000001	0.000001 0.000002 0.000002 0.000004 0.000006	6000000.0
	f_7		1111		0.00000 0.000001 0.000001 0.000001	$\begin{array}{c} 0.000002\\ 0.000002\\ 0.000003\\ 0.000004\\ 0.000005 \end{array}$	$\begin{array}{c} 0.000006 \\ 0.000011 \\ 0.000018 \\ 0.000029 \\ 0.000045 \end{array}$	$\begin{array}{c} 0.000068 \\ 0.000101 \\ 0.000144 \\ 0.000203 \\ 0.000280 \end{array}$	0.000381
$3d\pi_g$	f_5	00000000	$\begin{array}{c} 0.000001\\ 0.000002\\ 0.000003\\ 0.000006\\ 0.000009 \end{array}$	$\begin{array}{c} 0.000014 \\ 0.000021 \\ 0.000030 \\ 0.000042 \\ 0.000057 \end{array}$	$\begin{array}{c} 0.000076 \\ 0.000099 \\ 0.000128 \\ 0.000162 \\ 0.000203 \end{array}$	$\begin{array}{c} 0.000251 \\ 0.000307 \\ 0.000372 \\ 0.000447 \\ 0.000533 \end{array}$	$\begin{array}{c} 0.000631 \\ 0.000934 \\ 0.001337 \\ 0.001858 \\ 0.002520 \end{array}$	$\begin{array}{c} 0.003347 \\ 0.004368 \\ 0.005614 \\ 0.007120 \\ 0.008925 \end{array}$	0.011074
	f_3	$\begin{array}{c} 0.000000\\ 0.000054\\ 0.000217\\ 0.000491\\ 0.000876 \end{array}$	$\begin{array}{c} 0.001373 \\ 0.001987 \\ 0.002717 \\ 0.003567 \\ 0.004540 \end{array}$	$\begin{array}{c} 0.005639 \\ 0.006866 \\ 0.008225 \\ 0.009717 \\ 0.011347 \end{array}$	$\begin{array}{c} 0.013115 \\ 0.015024 \\ 0.017077 \\ 0.019275 \\ 0.021620 \end{array}$	$\begin{array}{c} 0.024115 \\ 0.026762 \\ 0.029563 \\ 0.032521 \\ 0.035637 \end{array}$	$\begin{array}{c} 0.038915 \\ 0.04783 \\ 0.05784 \\ 0.06897 \\ 0.08132 \end{array}$	$\begin{array}{c} 0.09496 \\ 0.10999 \\ 0.12651 \\ 0.14465 \\ 0.16455 \end{array}$	0.18636
	f_1	$1.0000 \\ 1.0001 \\ 1.0005 \\ 1.0012 \\ 1.0022$	$\begin{array}{c} 1.0034 \\ 1.0049 \\ 1.0068 \\ 1.0089 \\ 1.0113 \end{array}$	$1.0140 \\ 1.0171 \\ 1.0204 \\ 1.0241 \\ 1.0281$	$\begin{array}{c} 1.0325 \\ 1.0372 \\ 1.0422 \\ 1.0475 \\ 1.0532 \end{array}$	$1.0592 \\ 1.0656 \\ 1.0723 \\ 1.0794 \\ 1.0868$	$\begin{array}{c} 1.0946 \\ 1.1156 \\ 1.1389 \\ 1.1645 \\ 1.1925 \end{array}$	$\begin{array}{c} 1.2232 \\ 1.2565 \\ 1.2927 \\ 1.3318 \\ 1.3741 \end{array}$	1.4199
	R	0.0 0.2 0.6 0.6 0.8	1.0 1.2 1.4 1.6 1.8	2.2.2.2 2.4.2.2 8.6.4.2.0	3.5 3.5 3.6 3.6 3.6	4.4 4.4 4.6 8.4	5.0 6.0 7.0	7.5 8.0 8.5 9.0 9.5	10.0
	f_{10}							00000000	0.000001
	f_8 f_{10}						0.000000 0.000001 0.000001 0.000002 0.000003	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.000036 0.000001
n,				0.000000 0.000001 0.000001 0.000001	0.000002 0.000003 0.000004 0.000005 0.000007	0.000009	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$2p\pi_u$	f_8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.000303 0.000002 — 0.000382 0.000003 — 0.000474 0.000004 — 0.000580 0.000005 — 0.000702 0.000007 —	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.000005 0.000007 0.000011 0.000012	0.000036
$2p\pi_u$	f_6 f_8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00000 0.000001 0.000001 0.000001			0.000030 0.000048 0.000076 0.000116	0.000247 0.000005 0.000350 0.000007 0.000486 0.000011 0.000667 0.000017 0.000903 0.000025	0.001210 0.000036
$2p \pi_u$	f_4 f_6 f_8			0.000070 0.000099 0.000136 0.000001 0.000237 0.000001	0.000303 0.000382 0.000474 0.000580 0.000702	0.000842 0.001001 0.001180 0.001381 0.001606	0.001858 0.000030 0.002611 0.000048 0.003572 0.000076 0.004781 0.000116 0.006287 0.000171	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.025436 0.001210 0.000036

236

Table 3. The coefficients of the λ expansion ((13) of text)

	84	$\begin{array}{c} 0.0000 \\ -0.0000 \\ -0.0000 \\ -0.0001 \\ -0.0001 \end{array}$	$\begin{array}{c} -0.0001\\ -0.0001\\ -0.0002\\ -0.0002\\ -0.0002 \end{array}$	$\begin{array}{c} -0.0002\\ -0.0002\\ -0.0001\\ -0.0001\\ -0.0001\\ \end{array}$	- 0.0001 - 0.0001 - 0.0001 - 0.0001	- 0.0001 - 0.0001 - 0.0001 		1111	
	83	$\begin{array}{c} 0.0000 \\ -0.0000 \\ -0.0001 \\ -0.0004 \\ -0.0006 \end{array}$	$\begin{array}{c} -0.0008 \\ -0.0011 \\ -0.0013 \\ -0.0015 \\ -0.0017 \end{array}$	$\begin{array}{c} -0.0018 \\ -0.0019 \\ -0.0020 \\ -0.0020 \\ -0.0020 \end{array}$	$\begin{array}{c} -0.0020 \\ -0.0019 \\ -0.0019 \\ -0.0018 \\ -0.0018 \end{array}$	$\begin{array}{c} -0.0017 \\ -0.0016 \\ -0.0014 \\ -0.0013 \\ -0.0011 \end{array}$	$\begin{array}{c} -0.0009 \\ -0.0007 \\ -0.0005 \\ -0.0003 \\ -0.0001 \end{array}$	- 0.0000 - 0.0000 - 0.0000 - 0.0002 - 0.0003	-0.0005
2sg	82	$\begin{array}{c} 0.0000 \\ -0.0002 \\ -0.0014 \\ -0.0042 \\ -0.0087 \end{array}$	$\begin{array}{c} -0.0148 \\ -0.0225 \\ -0.0317 \\ -0.0423 \\ -0.0541 \end{array}$	$\begin{array}{c} -0.0670 \\ -0.0811 \\ -0.0961 \\ -0.1121 \\ -0.1289 \end{array}$	$\begin{array}{c} -0.1466 \\ -0.1649 \\ -0.1840 \\ -0.2036 \\ -0.2238 \end{array}$	$\begin{array}{c} -0.2445 \\ -0.2656 \\ -0.2871 \\ -0.3313 \end{array}$	$\begin{array}{c} -0.3538 \\ -0.4114 \\ -0.4700 \\ -0.5291 \\ -0.5885 \end{array}$	$\begin{array}{c} -0.6475 \\ -0.7061 \\ -0.7640 \\ -0.8207 \\ -0.8762 \end{array}$	-0.9304
	g_1	$\begin{array}{c} -1.0000 \\ -1.2136 \\ -1.4392 \\ -1.6663 \\ -1.8919 \end{array}$	$\begin{array}{l} -2.1146 \\ -2.3342 \\ -2.5506 \\ -2.7639 \\ -2.9743 \end{array}$	-3·1818 -3·3868 -3·5893 -3·7895 -3·9876	$\begin{array}{r} -4.1837 \\ -4.3780 \\ -4.5706 \\ -4.7617 \\ -4.9514 \end{array}$	$\begin{array}{c} -5 \cdot 1398 \\ -5 \cdot 3270 \\ -5 \cdot 5132 \\ -5 \cdot 6983 \\ -5 \cdot 8827 \end{array}$	$\begin{array}{c} -6.0663 \\ -6.5225 \\ -6.9760 \\ -7.4281 \\ -7.8797 \end{array}$	$\begin{array}{c} -8.3318 \\ -8.7851 \\ -9.2403 \\ -9.6979 \\ -10.1580 \end{array}$	-10.6209
	80								_
	R	0.0 0.2 0.4 0.6 0.8	1.0 1.2 1.4 1.6 1.8	2222 02422 8 8	3.7 3.4 3.6 3.8	0.4 4.4 4.6 8.4 8.8	5.5 6.0 7.0 7.0	7.5 8.0 9.0 9.5	10.0
	\mathcal{S}_2	0.0000 0.0000 0.0001 0.0002 0.0002	0-0003 0-0004 0-0004 0-0004 0-0004	0.0004 0.0003 0.0003 0.0003	0.0003 0.0003 0.0002 0.0002	$\begin{array}{c} 0.0002 \\ 0.0002 \\ 0.0002 \\ 0.0001 \\ 0.0001 \end{array}$	1111		
18 og	81.	$\begin{array}{ccc} 0.0000 & 0.0000 \\ 0.0002 & 0.0000 \\ 0.0010 & 0.0001 \\ 0.0024 & 0.0002 \\ 0.0042 & 0.0002 \end{array}$	$\begin{array}{ccc} 0.0062 & 0.0003 \\ 0.0083 & 0.0004 \\ 0.0105 & 0.0004 \\ 0.0126 & 0.0004 \\ 0.0147 & 0.0004 \end{array}$	$\begin{array}{ccc} 0.0168 & 0.0004 \\ 0.0187 & 0.0003 \\ 0.0206 & 0.0003 \\ 0.0223 & 0.0003 \\ 0.0239 & 0.0003 \end{array}$	$\begin{array}{ccc} 0.0255 & 0.0003 \\ 0.0269 & 0.0003 \\ 0.0281 & 0.0002 \\ 0.0293 & 0.0002 \\ 0.0304 & 0.0002 \end{array}$	$\begin{array}{ccc} 0.0313 & 0.0002 \\ 0.0321 & 0.0002 \\ 0.0328 & 0.0002 \\ 0.0334 & 0.0001 \\ 0.0339 & 0.0001 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$1s\sigma_{g}$							$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

TRANSACTIONS SOCIETY A

MATHEMATICAL,
PHYSICAL
& ENGINEERING
SCIENCES

TRANSACTIONS SOCIETY A

	82	0.0000 0.0000 0.0001 0.0002 0.0003	0.0005 0.0006 0.0006 0.0006	0.0005 0.0005 0.0004 0.0004 0.0004	0.0004 0.0003 0.0002 0.0002 0.0002	0.0002 0.0002 0.0002 0.0002 0.0001			
$2p \sigma_u$	g_1	1.0000 0.8099 0.6418 0.4990 0.3831	0.2935 0.2270 0.1788 0.1444 0.1198	0·1019 0·0888 0·0790 0·0714 0·0656	0.0611 0.0573 0.0543 0.0519 0.0498	0.0480 0.0465 0.0452 0.0441 0.0431	$\begin{array}{c} 0.0422 \\ 0.0403 \\ 0.0387 \\ 0.0374 \\ 0.0362 \end{array}$	$\begin{array}{c} 0.0351 \\ 0.0341 \\ 0.0323 \\ 0.0323 \end{array}$	
	80		,,						
	R	0.0 0.2 0.4 0.8 8.0	0.1 1.2 1.4 1.8 1.8	22222 2242 8644 86	66666666666666666666666666666666666666	4 4 4 4 4 0 4 4 4 4 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	7 6 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	7 88.0 9.5 0	
	86	0000-0 0000-0 0000-0	0.0000 0.0000 0.0000 0.0000	0.0001 0.0001 			1 1 1 1		
	85	$\begin{array}{c} 0.0000 \\ 0.0000 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$	0.0001 0.0002 0.0003 0.0003	0.0003 0.0003 0.0003 0.0003	$\begin{array}{c} 0.0003 \\ 0.0003 \\ 0.0002 \\ 0.0002 \\ 0.0002 \end{array}$	$\begin{array}{c} 0.0002 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$	0.0001 0.0001 0.0000 0.0000	0.0000 0.0000 0.0001 0.0001	0.0003
	84	0.0000 0.0000 0.0001 0.0003 0.0003	$\begin{array}{c} 0.0010 \\ 0.0015 \\ 0.0019 \\ 0.0023 \\ 0.0027 \end{array}$	$\begin{array}{c} 0.0031 \\ 0.0034 \\ 0.0037 \\ 0.0039 \\ 0.0040 \end{array}$	$\begin{array}{c} 0.0041 \\ 0.0042 \\ 0.0042 \\ 0.0041 \\ 0.0040 \end{array}$	$\begin{array}{c} 0.0038 \\ 0.0036 \\ 0.0034 \\ 0.0032 \\ 0.0029 \end{array}$	$\begin{array}{c} 0.0027 \\ 0.0020 \\ 0.0012 \\ 0.0006 \\ 0.0001 \end{array}$	$\begin{array}{c} 0.0000 \\ 0.0003 \\ 0.0010 \\ 0.0021 \\ 0.0038 \end{array}$	0.0063
3s c.	83	$\begin{array}{c} 0.0000 \\ 0.0001 \\ 0.0015 \\ 0.0048 \\ 0.0107 \end{array}$	$\begin{array}{c} 0.0194 \\ 0.0313 \\ 0.0465 \\ 0.0652 \\ 0.0874 \end{array}$	$\begin{array}{c} 0.1132 \\ 0.1428 \\ 0.1760 \\ 0.2131 \\ 0.2540 \end{array}$	0.2987 0.3474 0.3999 0.4564 0.5168	0.5811 0.6495 0.7217 0.7979 0.8780	$\begin{array}{c} 0.9622 \\ 1.1895 \\ 1.4410 \\ 1.7166 \\ 2.0158 \end{array}$	$\begin{array}{c} 2.3384 \\ 2.6838 \\ 3.0516 \\ 3.4412 \\ 3.8520 \end{array}$	4.2838
(,,	82	$\begin{array}{c} 1.0000 \\ 1.2956 \\ 1.6318 \\ 1.9964 \\ 2.3833 \end{array}$	$\begin{array}{c} 2.7906 \\ 3.2161 \\ 3.6591 \\ 4.1186 \\ 4.5942 \end{array}$	5.0852 5.5913 6.1122 6.6477 7.1973	7.7610 8.3383 8.9291 9.5338 10.1514	10.7825 11.4265 12.0836 12.7536 13.4366	14-1324 15-9280 17-8039 19-7601 21-7977	23.9174 26.1206 28.4089 30.7845 33.2490	35.8043
	g_1	$\begin{array}{c} -2.0000 \\ -2.2829 \\ -2.5805 \\ -2.8812 \\ -3.1810 \end{array}$	$\begin{array}{c} -3.4787 \\ -3.7739 \\ -4.0663 \\ -4.3561 \\ -4.6432 \end{array}$	$\begin{array}{c} -4.9277 \\ -5.2099 \\ -5.4898 \\ -5.7675 \\ -6.0431 \end{array}$	$\begin{array}{c} -6.3168 \\ -6.5885 \\ -6.5885 \\ -7.1268 \\ -7.3934 \end{array}$	$\begin{array}{c} -7.6585 \\ -7.9222 \\ -8.1844 \\ -8.4454 \\ -8.7051 \end{array}$	$\begin{array}{c} -8.9636 \\ -9.6052 \\ -10.2408 \\ -10.8713 \\ -11.4975 \end{array}$	$\begin{array}{c} -12.1201 \\ -12.7399 \\ -13.3576 \\ -13.9739 \\ -14.5893 \end{array}$	-15.2042
	80								_
	R	0.0 0.2 0.4 0.6 0.8	1.0 1.1 1.6 1.6 1.8	2 2 2 2 2 2 2 3 4 5 4 5 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6.	4 4 4 4 4 0 4 4 4 4 4 6 8 6 8 6 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	76655	7 8 8 8 7 7 0 12 0 12	10.0

Table 3. The coefficients of the λ expansion ((13) of text) (cont.)

238	3	D. R. B.	ATES, KA	THLEEN I	EDSHAM	AND A. I	STEWAF	RT	
	82	00000·0 00000·0 00000·0	$\begin{array}{c} 0.0000 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$	$\begin{array}{c} 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \\ 0.0001 \end{array}$	0.0001 0.0001 0.0001				I
	84	$\begin{array}{c} 0.0000 \\ 0.0000 \\ 0.0001 \\ 0.0002 \\ 0.0004 \end{array}$	$\begin{array}{c} 0.0007 \\ 0.0009 \\ 0.0011 \\ 0.0012 \\ 0.0013 \end{array}$	$\begin{array}{c} 0.0013 \\ 0.0013 \\ 0.0013 \\ 0.0012 \\ 0.0012 \end{array}$	$\begin{array}{c} 0.0011 \\ 0.0010 \\ 0.0009 \\ 0.0008 \\ 0.0006 \end{array}$	$\begin{array}{c} 0.0005 \\ 0.0004 \\ 0.0003 \\ 0.0002 \\ 0.0001 \end{array}$	$\begin{array}{c} 0.0001 \\ 0.0000 \\ 0.0001 \\ 0.0004 \\ 0.0010 \end{array}$	$\begin{array}{c} 0.0019 \\ 0.0031 \\ 0.0049 \\ 0.0069 \\ 0.0094 \end{array}$	0.0126
	g ₃	$\begin{array}{c} 1.0000 \\ 0.8957 \\ 0.7891 \\ 0.6898 \\ 0.6062 \end{array}$	$\begin{array}{c} 0.5437 \\ 0.5029 \\ 0.4816 \\ 0.4762 \\ 0.4834 \end{array}$	0.5005 0.5257 0.5576 0.5954 0.6384	$\begin{array}{c} 0.6861 \\ 0.7382 \\ 0.7946 \\ 0.8550 \\ 0.9192 \end{array}$	$\begin{array}{c} 0.9873 \\ 1.0591 \\ 1.1346 \\ 1.2137 \\ 1.2963 \end{array}$	$\begin{array}{c} 1.3825 \\ 1.6134 \\ 1.8659 \\ 2.1396 \\ 2.4345 \end{array}$	2.7501 3.0863 3.4429 3.8195 4.2157	4.6317
$4p \sigma_u$	g_2	$\begin{array}{c} -1.0000 \\ -0.5984 \\ -0.2001 \\ +0.1865 \\ 0.5576 \end{array}$	$\begin{array}{c} 0.9158 \\ 1.2685 \\ 1.6243 \\ 1.9904 \\ 2.3713 \end{array}$	2.7697 3.1866 3.6227 4.0780 4.5525	5.0458 5.5580 6.0887 6.6378 7.2050	7.7903 8.3932 9.0138 9.6520 10.3075	$\begin{array}{c} 10.9802 \\ 12.7369 \\ 14.5991 \\ 16.5657 \\ 18.6355 \end{array}$	$20.8081 \\ 23.0824 \\ 25.4580 \\ 27.9348 \\ 30.5124$	33.1904
	g_1	$\begin{array}{c} -1.0000 \\ -1.2935 \\ -1.5740 \\ -1.8420 \\ -2.1004 \end{array}$	$\begin{array}{c} -2.3538 \\ -2.6069 \\ -2.8631 \\ -3.1239 \\ -3.3894 \end{array}$	$\begin{array}{c} -3.6590 \\ -3.9318 \\ -4.2072 \\ -4.4842 \\ -4.7626 \end{array}$	$\begin{array}{c} -5.0417 \\ -5.3213 \\ -5.6012 \\ -5.8811 \\ -6.1609 \end{array}$	$\begin{array}{c} -6.4405 \\ -6.7197 \\ -6.9986 \\ -7.2771 \\ -7.5551 \end{array}$	$\begin{array}{c} -7.8326 \\ -8.5242 \\ -9.2125 \\ -9.8975 \\ -10.5793 \end{array}$	$\begin{array}{c} -11.2581 \\ -11.9339 \\ -12.6071 \\ -13.2778 \\ -13.9461 \end{array}$	-14.6123
	S_0								_
	R	0.0 0.2 0.4 0.6 0.8	1.0 1.1 1.4 1.6 1.8	2222 2242 86423	3.5 3.5 3.6 3.6 3.6 3.6	4444 64444 846 846	5.0 6.0 7.0	7.5 8.0 9.0 9.5	10.0
	84	0000·0 - 0000·0 - 0000·0 - 0000·0	$\begin{array}{c} -0.0000 \\ -0.0000 \\ -0.0001 \\ -0.0001 \\ -0.0001 \end{array}$	-0.0001 -0.0001 -0.0001 -0.0001					
, ,	83 84		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} -0.0010 & -0.0001 \\ -0.0010 & -0.0001 \\ -0.0009 & -0.0001 \\ -0.0009 & -0.0001 \\ -0.0009 & -0.0001 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.0001 -0.0001 -0.0000 -0.0000 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$3p\sigma_u$			1 1 1		l	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1
$3p\sigma_u$	83	0.0000 -0.0000 -0.0000 -0.0002 -0.0004	0.4479	- 0.0010 - 0.0010 - 0.0009 - 0.0009	- 0.00008 - 0.00006 - 0.0006 - 0.0005	0.4221 0.4384 0.4552 0.4724 0.4899	1 1		-0.0007
$3p\sigma_u$	82 83	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} -0.3509 & -0.0008 & -\\ -0.3632 & -0.0007 \\ -0.3767 & -0.0006 \\ -0.3911 & -0.0006 \\ -0.4063 & -0.0005 \end{array}$		$\begin{array}{c} -0.5076 \\ -0.5531 \\ -0.5997 \\ -0.6470 \\ -0.6946 \end{array}$	$\begin{array}{cccc} -0.7425 \\ -0.7903 \\ -0.8381 \\ -0.8854 \\ -0.9324 \end{array}$	-0.9786 -0.0007

TRANSACTIONS SOCIETY A

PHILOSOPHICAL THE ROYAL PHYSICAL PHYSICAL PHYSICAL SCIENCES SOCIETY SCIENCES

	(ON V	ΝA	VE	FU	IN(CTI	NC	S	ЭF	T	ΗE	ŀ	ΗY	DR	.00	ξE	N	MO	DLI	EC	UJ	LA]	R I	(O	N	23	39
	83	$1.0000 \\ 0.9039$	$0.8156 \\ 0.7343$	0.6598	0.5914	0.4717	$\begin{array}{c} 0.4196 \\ 0.3723 \end{array}$	0.3292	0.2903	0.2232	0.1947	0.1690	0.1461	$0.1257 \\ 0.1075$	0.0915	0.0774	0.0650	$0.0543 \\ 0.0450$	0.0370	0.0303	$\begin{array}{c} 0.0175 \\ 0.0006 \end{array}$	$0.0030 \\ 0.0051$	0.0026	0.0013	0.0007	0.0003	7000.0	
	g_2	9.0000 8.4140	7.8557 7.3241	6.8185	6.3381	5.4497	$\begin{array}{c} 5.0403 \\ 4.6529 \end{array}$	4.2870	3.9417 3.6163	3.3101	3.0225	2.7527	2.5002	2:2642 2:0442	1.8396	1.6499	1.4744	$\begin{array}{c} 1.3127 \\ 1.1642 \end{array}$	1.0286	0.9052	0.6466	0.4525	0.2153	0.1501	0.1069	0.0783 0.0593	0.0465	0.0373
$4f\sigma_u$	g_1	$9.0000 \\ 8.7015$	$8.4060 \\ 8.1135$	7.8241	7.5379	6.9751	6.6988 6.4259	6.1566	5.8910 5.6903	5.3715	5.1178	4.8685	4.6237	4.3836 4.1485	3.9188	3.6946	3.4763	3.2644 3.0592	2.8612	2.6708	2.2308	1.5241	1.2605	1.0514	6888.0	0.7634	0.5916	0.5327
	80			. —		·		1	,—, ,—		П	1	- - ,		-	1	, i		-	1		- F	1	1	П,			П
	R	0.0	0.4 0.6	8.0	1:0	1.4	1.6	2.0	2.7 2.4 2.4	7. ₆ #	2.8	3.0	3.7	3.4 4.6	3. 8.	4.0	4.2	4.4 4.6	4.8	2.0	بن بن و	0.0 0.0	7.0	7.5	8.0	ထ က င	9.5	10.0
	. 82	$1.0000 \\ 0.8731$	0.758 <u>4</u> 0.6550	0.5620	0.4788	0.3387	$\begin{array}{c} 0.2808 \\ 0.2303 \end{array}$		$\begin{array}{c} 0.1496 \\ 0.1185 \end{array}$	0.0929	0.0721	0.0556	0.0428	0.0330	0.0198	0.0156	0.0125	$0.0101 \\ 0.0082$	8900.0	0.0059	0.0045	0.0030	0.0029	0.0029	0.0028	$0.0028 \\ 0.0030$	0.0032	0.0034
$3d\sigma_{g}$	g_1	4.0000 3.7362	$\begin{array}{c} 3.4785 \\ 3.2270 \end{array}$	2.9823	2.7446	2.2933	$\begin{array}{c} 2.0810 \\ 1.8788 \end{array}$	1.6878	1.5089 1.3431	1.1914	1.0543	0.9321	0.8247	$0.7313 \\ 0.6510$	0.5826	0.5247	0.4759	0.4348 0.4002	0.3711	0.3467	0.3010	0.2507	0.2370	0.2280	0.2221	$\begin{array}{c} 0.2184 \\ 0.9164 \end{array}$	0.2155	0.2153
Ma	80	<u>-</u>		ı — ,				1		- 	1	1	н,		. —	-	-		П	7	- -	-	_	-	П		-	1
	R	0.0	0.4 0.6	8.0	1.0	1.4	1.6 1.8	2.0	2.2 2.4	7.e 7.e	2.8	3.0	3.7	8. 8. 4. 6.	. & . &	4.0	4.7	4.4 4.0	4.8	2.0	က က (6.5	7.0	7.5	0·8	လ လူင	9.5	10.0

TABLE 3.		The coefficients of the λ expansion ((13) of text) (cont.)	OF TEXT) (ϵ	ont.)
$2p\pi_u$				$3d\pi_{g}$
S_1	82	R	80	g_1
0.0000	0.0000	0.0	1	1.0000
0.0011	0000.0-	0.5	1	0.9351
1	0000.0	0.4	1	0.8734
į	0.0000	9.0	-	0.8152
0.0107	00000-0	8.0	-	9094-0
•	-0.0001	1.0	1	0.7095
•	0.0001	1.2	1	0.6620
•	-0.0002	1.4	,—1	0.6179
•	-0.0002	1.6	1	0.5772
0.0300	0.0003	1.8	П	0.5398
0.0337	-0.0003	2.0	Π	0.5056

		$2p \pi_u$				3d ng	
R	80	g_1	82	R	80	S_1	82
0.0	Т	0.000	0.0000	0.0	_	1.0000	0.0000
0.2	_	0.0011	00000	0.5	, ,	0.9351	-0.0000
4.0		0.0037	0000-0-	0.4	-	0.8734	0.0001
o «	⊣ ⊢	0.0070	0.000-	e œ	F-	9092-0	₹000-0-1 -0-0000
	4	10100				-	
1.0	1	0.0146	-0.0001	1.0	, ,	0.7095	8000.0-
1.2	-	0.0185	-0.0001	1.2	— ,	0.6620	-0.0010
1.4	-	0.0224	-0.0002	1.4	,—, ,	0.6179	-0.0011
1.6	-	0.0262	-0.0002	1.6	-	0.5772	-0.0012
1.8	-	0.0300	-0.0003	1.8	-	0.5398	-0.0013
2.0	П	0.0337	-0.0003	2.0	П	0.5056	-0.0014
2.7	П	0.0372	-0.0004	2.7	_	0.4744	-0.0014
2.4	-	0.0407	-0.0004	2.4		0.4460	-0.0014
5.6	_	0.0442	-0.0005	3.6	 -	0.4202	-0.0014
2.8	_	0.0476	-0.0005	2.8	П	0.3968	-0.0014
3.0	,	0.0508	9000-0-	3.0		0.3757	-0.0013
3.5	٠,-	0.0540	90000-0-	3.5	. —	0.3566	-0.0013
3.6	· —	0.0572	-0.0000	3.4	-	0.3393	-0.0012
3.6	-	0.0602	-0.0000	3.6	-	0.3238	-0.0012
3.8	1	0.0632	-0.0007	3.8	 -i	0.3097	-0.0011
4.0	-	0.0662	8000-0-	4.0	1	0.2970	-0.0010
4.2	-	0690.0	8000.0-	4.2	П	0.2855	-0.0010
4.4	Т	0.0718	8000:0 -	4.4	_	0.2752	$6000 \cdot 0 -$
4.6	П	0.0746	6000.0 —	4.6	-	0.2658	-0.0008
4.8	Н	0.0772	6000.0	4·8	_	0.2572	8000.0
2.0	П	0.0799	6000.0—	2.0	П	0.2495	-0.0007
5.5	-	0.0861	-0.0010	5.5		0.2331	-0.0005
0.9	П	0.0921	6000.0 —	0.9	_	0.2200	-0.0004
6.5	_	0.0978	8000.0	6.5		0.2095	-0.0002
7.0	П	0.1030	8000.0	0.7	1	0.2010	-0.0001
7.5	,	0.1080	8000.0-	7.5	Н	0.1940	0.0000
8.0	_	0.1126	-0.0007	0.8	_	0.1883	+0.0002
8.5	П	0.1170	9000-0-	8.5	П	0.1835	0.0003
0.6		0.1210	-0.0004	0.6	Α,	0.1794	0.0004
9.5	—	0.1247	-0.0004	9.5	Τ	0.1759	0.0004
10.0	_	0.1281	-0.0003	10.0	1	0.1729	0.0005